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Abstract
Given a scientific collaboration network, how can we find a group of collaborators with high research indicator (e.g., h-index)
and diverse research interests? Given a social network, how can we identify the communities that have high influence (e.g.,
PageRank) and also have similar interests to a specified user? In such settings, the network can be modeled as a multi-valued
network where each node has d (d ≥ 1) numerical attributes (i.e., h-index, diversity, PageRank, similarity score, etc.). In the
multi-valued network, we want to find communities that are not dominated by the other communities in terms of d numerical
attributes. Most existing community search algorithms either completely ignore the numerical attributes or only consider one
numerical attribute of the nodes. To capture d numerical attributes, we propose a novel community model, called skyline
community, based on the concepts of k-core and skyline. A skyline community is a maximal connected k-core that cannot
be dominated by the other connected k-cores in the d-dimensional attribute space. We develop an elegant space-partition
algorithm to efficiently compute the skyline communities. Two striking advantages of our algorithm are that (1) its time
complexity relies mainly on the size of the answer s (i.e., the number of skyline communities), and thus, it is very efficient if
s is small; and (2) it can progressively output the skyline communities, which is very useful for applications that only require
part of the skyline communities. In addition, we also develop three efficient graph reduction techniques to further speed up the
proposed algorithms. Extensive experiments on both synthetic and real-world networks demonstrate the efficiency, scalability,
and effectiveness of the proposed algorithm.
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1 Introduction

Many real-world networks such as social networks consist
of community structures. Discovering the communities from
a network is a fundamental problem in network analysis.
Recently, a query-dependent community discovery problem
called community search has attracted much attention in the
database community due to a large number of applications
[13,14,16,17,20,30]. The goal of the community search prob-
lem is to find those densely connected subgraphs in a network
that satisfy the query conditions.

In many real-world applications, the nodes in a network
are often associated with numerical attributes. Such numeri-
cal attributes can be obtained from the profiles of the nodes
or the statistical information of the nodes computed by
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different network analysis methods (e.g., the degree, PageR-
ank, influence, etc.). For example, in the Aminer scientific
collaboration network (http://aminer.org), each author has
several numerical attributes, including the number of pub-
lished papers, h-index, activity, diversity, sociability, etc.
Such network data are typically modeled as a multi-valued
networkwhere each node is associatedwith d (d ≥ 1) numer-
ical attributes.

Given a multi-valued network, how can we find the com-
munities that are not dominated by the other communities
in terms of d numerical attributes? For instance, consider a
pair of numerical attributes (h-index, diversity) in theAminer
scientific collaboration network. How can we find a group of
collaboratorswith high h-index and diverse research interests
in the Aminer network? Similarly, consider two numerical
attributes (#papers, activity). How can we find a community
in the Aminer network so that its members not only have a
number of publications, but also they are very active in their
research areas in recent years?

Most existing community search algorithms either com-
pletely ignore the numerical attributes or only consider one
numerical attribute of the nodes [20], and therefore, they
cannot be directly used to answer these questions. A naive
approach to address these questions is described as follows.
First, we can compute the average value (or other linear
combinations) over all d numeric attributes for each node
in the multi-valued network. Then, based on the average
value of each node, we apply the previous community search
algorithm for one numerical attribute [20] to identify com-
munities. This naive method, however, cannot fully capture
all the interesting communities in the d-dimensional attribute
space. This is because a community with high average value
in each dimension could also be dominated by the other
communities (as confirmed in our experiments). To fully
characterize all those interesting communities, we propose
a novel community model called skyline community based
on the concepts of k-core [28] and skyline [5]. A skyline
community is a maximal connected k-core (not necessary
the maximal k-core as defined in [28]) that is not dominated
by the other connected k-cores in the d-dimensional attribute
space (the detailed definition can be found in Sect. 3). Except
for finding interesting communities in a scientific collabora-
tion network, our skyline community model can also be used
for many other interesting applications, three of which are
introduced as follows.

Personalized influential community search. In an online
social network, a user may want to discover the influen-
tial communities with similar interests. For example, in the
Facebook social network, a football-fan user would like to
find the influential football-fan groups, as these groups play
important roles for football information dissemination in the
network. In this application, we can extract two numeric

attributes for each user: the influence and similarity (i.e., the
similarities between the query user and the other users in the
social network). By discovering the skyline communities on
these numeric attributes, we can obtain the communities that
are not dominated by the others in terms of both influence
and similarity. Therefore, from the skyline communities, the
query user can get the desired communities that are not only
influential, but also have similar interests to him.

Close social groups discovery inLBSN.The location-based
social network (LBSN) is a special social network in which
each user is associated with a location. To join similar and
close social groups, a user in an LBSN may wish to find the
social groups such that they not only have similar interests,
but they are also close to him. Similar query may also help
the companies to perform marketing or promotion activities.
For example, the fast food company KFC may want to iden-
tify the social groups that are not only interested in KFC’s
food, but they are also close to the location of KFC. In these
applications, we can extract two numeric attributes for each
user in the LBSN: (1) the similarity between the query and
the user, and (2) the distance between the query location and
the user’s location. By mining the skyline communities on
these numeric attributes, we are able to obtain the desired
social groups.

Versatile team search. Consider a team search application
in the Aminer scientific network. We may wish to find a
team so that its members not only have high h-index values,
but also they are very active in their research areas in recent
years. Such teams can be detected by mining the skyline
communities from the Aminer network using two numeric
attributes: the h-index and activity. Similarly, by finding the
skyline communities with three attributes including activity,
the number of publications, and diversity, we can also iden-
tify the teams whose members are active in their research
areas, and also they have numerous publications and diverse
research interests.

Technical challenge and our contributions. Finding the
skyline communities is a challenging task. The challenge we
face is fundamentally different from the traditional skyline
discovery problem. This is because in our problem, the com-
munities are not given. Moreover, the number of potential
communities (i.e., the number of connected k-cores) can be
exponentially large in a multi-valued graph, and thus, it is
very difficult to determine which community is located on
the skyline. To overcome this challenge, we develop several
novel algorithms to find the skyline communities efficiently.
The main contributions of this paper are summarized below.
New community model. We propose the skyline commu-
nitymodel which can be applied to discover the communities
that are not dominated by the other communities in a multi-
valued network. To the best of our knowledge, the skyline
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community model is the first community model for multi-
valued networks, and our work is also the first to introduce
skyline for community modeling.
Novel algorithms. We first develop an efficient algorithm,
called SkylineComm2D, to find all the skyline communi-
ties in the 2D case, i.e., d = 2. The time complexity of
SkylineComm2D is O(s(m + n)) where s denotes the num-
ber of 2D skyline communities (i.e., the answer size), and
the space complexity of SkylineComm2D is O(m + n + s),
which is linear with respect to (w.r.t.) the graph and answer
size. To handle the high-dimensional case (i.e., d ≥ 3),
we propose a basic algorithm and an elegant space-partition
algorithm to find the skyline communities efficiently. Two
striking features of the space-partition algorithm are that (1)
its worst-case time complexity is dependent mainly on the
answer size, and thus, it is very efficient when the answer
size is not very large; and (2) it is able to progressively output
the skyline communities during the execution of the algo-
rithm, and therefore, it is very useful for applications that
only require part of the skyline communities. Additionally,
we also propose three new graph reduction techniques to
further speed up the proposed algorithms. The general idea
of our graph reduction techniques is that we first identify a
connected k-core H based on some fast heuristic algorithms
and then prune the unpromising nodes that are dominated
by H , since those nodes cannot be contained in any skyline
community.
Extensive experiments. We conduct extensive experiments
over both synthetic and real-world networks to evaluate the
proposed algorithms. The results show that SkylineComm2D
is very efficient which takes less than 3.5 s to compute all
the skyline communities in a real-world network with 2.5
million nodes and 7.9 million edges. The results also demon-
strate the high efficiency and scalability of the space-partition
algorithm. For example, in the same million-scale network,
the space-partition algorithm is able to derive all the skyline
communities within 500 s when d = 3. The space-partition
algorithm is also scalable to a power-law random graph with
more than 100 million edges even when d = 6. In addi-
tion, we conduct comprehensive case studies to evaluate the
effectiveness of the proposed skyline community model. The
results show thatmany interesting andmeaningful communi-
ties can be discovered using our model that cannot be found
by other methods.

Organization. Section 2 reviews the previous studies that
are related to this work. We propose the skyline community
model and formulate the skyline community search problem
in Sect. 3.We develop an efficient algorithm to find all the 2D
skyline communities in Sect. 4. The basic algorithm and the
space-partition algorithm for the d ≥ 3 case are proposed in
Sects. 5 and 6, respectively. The graph reduction techniques

are shown in Sect. 7. We report the experiments in Sect. 8
and conclude this paper in Sect. 9.

2 Related work

Community model and search. Community in a graph is
typically represented by a cohesive subgraph.A large number
of community models have been proposed, such as maximal
clique [8], k-core [13,22,28], k-truss [10,16,17,32], k-core-
truss [23], maximal k-edge connected subgraph [1,6,34],
k-plex [3,11], nucleus [27], quasi-clique [12], locally dens-
est subgraph [26,31], query-biased density [33], and so on.
All these community models only consider the graph struc-
tural information and ignore the attributes (numerical and
textual attributes) associated with the nodes. Recently, Fang
et al. [14] proposed an attributed community model that is
tailored to the graphs with textual attributes. Li et al. [20,21]
introduced an influential community model, which takes the
node’s influence into consideration. More recently, several
improved online search algorithms for the influential com-
munity computation problem had been proposed by Chen
et al. [7] and Bi et al. [4]. Note that all those improved
techniques are based on the sorted order of nodes by their
influence values. Since each node has d (d > 1) numerical
attributes for the skyline community search problem, there is
no sorted ordering of the nodes by considering all d (d > 1)
attributes. As a result, all the existing influential community
search techniques cannot be used for the skyline community
search problem with d > 1. We note that our skyline com-
munity model is the first community model that can capture
d-dimensional numerical attributes, and our work is also the
first to introduce skyline for community modeling. [19] is
a short version of this paper. In this paper, we extensively
extend our previous work [19] and develop three new graph
reduction techniques to further speed up the proposed algo-
rithms. Moreover, the experimental evaluations have been
substantially enhanced and all sections have been carefully
revised.

Another related line of work is on community search,
where the goal is to find a cohesive subgraph that includes the
query nodes. Sozio et al. [30] studied the community search
problem in social networks based on the k-coremodel.Huang
et al. [16] introduced a k-truss community model and pro-
posed several efficient k-truss community search algorithms.
Cui et al. [12] investigated an overlap community search
problem based on the quasi-clique model. More recently,
Huang et al. [17] proposed the closest truss communitymodel
to find the k-truss community with small diameter. An excel-
lent survey on community search models and algorithms can
be found in [15].
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Skyline computation. The skyline computation problem
was originally studied in the theory community. Kung et al.
[18] proposed an O(n log n) algorithm to find the skyline in
2D space. For the d-dimensional space, they also proposed
an O(n logd−2 n) algorithm. In the database community,
the skyline operator was first introduced by Borzsonyi et
al. [5]. A large number of algorithms have since been
devised to efficiently find the skyline under different settings
[2,9,24,25,29]. For example, Papadias et al. [24] proposed
an efficient algorithm for progressively finding the skyline.
Sheng and Tao [29] proposed an external-memory algorithm
to compute the skyline efficiently. Pei et al. [25] studied the
skyline computation problem for uncertain data. Asudeh et
al. [2] studied the skyline computation problem for hidden
web data. In this work, we are the first to study the skyline
community search problem, where the skyline operator is
defined over all the communities in a multi-valued graph.
Since our problem is fundamentally different from previous
skyline problems, all the existing algorithms cannot be used
for skyline community search.

3 Problem Statement

We model a graph with d numerical attributes as a multi-
valued graph G = (V , E, X), where V (|V | = n) and
E (|E | = m) denote the set of nodes and edges, respec-
tively, and X (|X | = n) is a set of d-dimensional vectors.
In a multi-valued graph, each node v ∈ V is associated
with a d-dimensional real-valued vector denoted by Xv =
(xv

1 , . . . , xv
d ), where Xv ∈ X and xv

i ∈ R. For convenience,
we refer to the i-th dimension (i = 1, . . . , d) as the xi
dimension. Suppose without loss of generality that on the
xi dimension, xv

i for all v ∈ V form a strict total order, i.e.,
xv
i �= xui for any u �= v. It is important to note that if this
assumption does not hold, we can easily construct a strict
total order by using the node identity to break ties for any
xv
i = xui . The d-dimensional vector Xv represents the values
of the node v w.r.t. d different numerical attributes.

Denote by δ(v,G) the degree of node v in themulti-valued
graph G. Let H = (VH , EH ) be an induced subgraph of G,
i.e., VH ⊆ V and EH = {(u, v)|u, v ∈ VH , (u, v) ∈ E}. A
k-core H is an induced subgraph where each node v ∈ H has
a degree at least k, i.e., δ(v, H) ≥ k. The maximal k-core H̃
is a k-core such that there is no super k-core containing H̃ .
For each node v ∈ V , the core number of v is the maximal k
such that a k-core contains v. Note that the maximal k-core
is not necessarily connected. To avoid confusion, we refer to
a connected k-core as a k-ĉore.

Let H = (VH , EH ) be an induced subgraph of G. Fol-
lowing the definition of the influence value of a community
in [20], we define the value of H on the xi dimension (for
i = 1, 2, . . . , d) as

fi (H) � minv∈VH {xv
i }. (1)

By Eq. (1), we define a domination relationship between
two subgraphs, which will be used to define our skyline com-
munity model.

Definition 1 Let H = (VH , EH ) and H ′ = (VH ′ , EH ′) be
two communities. If fi (H) ≤ fi (H ′) for all i = 1, . . . , d,
and there exists fi (H) < fi (H ′) for a certain i , we call that
H ′ dominates H , denoted by H ≺ H ′.

Based on Definition 1 , we propose a new community
model, called skyline community, by using the concepts of
k-core [28] and skyline [5].

Definition 2 Given amulti-valued graphG = (V , E, X) and
an integer k. A skyline community with a parameter k is an
induced subgraph H = (VH , EH , XH ) of G such that it
satisfies the following properties.

– Cohesive property: H is a k-ĉore (i.e., H is a connected
k-core);

– Skyline property: there does not exist an induced sub-
graph H ′ of G such that H ′ is a k-ĉore and H ≺ H ′;

– Maximal property: there does not exist an induced sub-
graph H ′ ofG such that (1) H ′ is a k-ĉore, (2) H ′ contains
H , and (3) fi (H ′) = fi (H) for all i = 1, . . . , d.

Note that the maximal property in Definition 2 ensures
that a skyline community is not contained in a larger skyline
community with the same f values on the d dimensions, and
therefore avoid redundancy. The following example illus-
trates the definition of the skyline community.

Example 1 Consider the graph shown in Fig. 1. The left panel
is a graph with 6 nodes, and the right panel shows the val-
ues of these nodes in three different dimensions. Suppose for
instance that k = 2. Then, by Definition 2, H1 = {v1, v2, v3}
is a skyline community with values f (H1) = (8, 14, 3),
because there does not exist a 2-ĉore that can dominate it,
and it is also the maximal subgraph that satisfies the cohesive
and skyline properties. Similarly, H2 = {v2, v4, v5, v6} is a
skyline community with f (H2) = (6, 8, 4). The subgraph
H3 = {v4, v5, v6} is not a skyline community, because it is
contained in H2 = {v2, v4, v5, v6} which has the same f
values as H3. The subgraph H4 = {v2, v3, v4, v5, v6} is also
not a skyline community, as f (H4) = (6, 8, 3) is dominated
by H1 and H2.

In this paper, we aim at computing all the skyline commu-
nities as defined inDefinition2.Note that ifd = 1, the skyline
community search problem is equivalent to the problem of
finding the top-1 influential community [20]. Therefore, if
d = 1, we can use the algorithms proposed in [20] to find the
skyline community efficiently. However, when d > 1, the
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Fig. 1 Running example

problem becomes much harder and the algorithms proposed
in [20] cannot be used. Below, we discuss the challenges of
our problem.

Challenges. The challenges to solve our problem are
twofold. First, the number of k-ĉores (i.e., connected k-
cores) in a multi-valued network can be exponentially large.
Thus, it is very costly to enumerate all the k-ĉores to
identify the skyline communities. Second, unlike the tradi-
tional d-dimensional skyline computation problem [5], the
d-dimensional data points in our problem, which correspond
to the k-ĉores, are not given. As a result, it is challenging
to devise an efficient algorithm to detect the skyline commu-
nities without enumerating all the k-ĉores. In the following
sections, wewill develop several efficient algorithms to over-
come these challenges.

4 Algorithm for d = 2

In this section, we propose an efficient algorithm to find all
skyline communities in the 2D case (i.e., d = 2). The algo-
rithm for the 2D case will be used as the building block
when we process the d > 2 case. In the rest of this paper, we
assumewithout loss of generality that the values of the nodes
on all d dimensions are positive (i.e., xui > 0 for all u ∈ V
and i = 1, . . . , d). For example, in the Aminer network,
the numerical attributes such as h-index and the number of
papers are positive. Note that if this assumption does not
hold, we can revise xui by x̃ui = xui − minv∈V {xv

i } + ε > 0
for all i = 1, . . . , d and u ∈ V which does not affect the
correctness of all the proposed algorithms (ε is a positive
constant).

Recall that in the 2D case each skyline community H has
two values ( f1(H), f2(H)). If H = ∅, we define fi (H) = 0
for i = 1, 2. For each skyline community H , we mainly
focus on devising an algorithm to compute ( f1(H), f2(H)),
because we can easily extract the community from G based
on these two values.

The basic idea of our algorithm is as follows. First, we
only consider the x2 dimension in graph G, and compute the
maximal f2 value, denoted by f ∗

2 , among all the k-ĉores.We

find a maximal k-ĉore (denoted by H̃ ) which achieves f ∗
2 by

recursively deleting the node with the smallest x2 value until
the graph contains no k-core.Note that themaximal k-ĉore H̃
may not be a skyline community. This is because H̃ could be
dominated by a community H which has the same f2 value,
but a larger f1 value than H̃ . However, such a community H
must be contained in H̃ , because it has the same f2 value as
H̃ , which is maximal over all the k-ĉores. Therefore, to find
a skyline community, we can apply the same procedure to
compute the maximal f1 value, denoted by f ∗

1 , over all the
connected sub-k-cores contained in H̃ . The resulting k-ĉore
denoted by H1 must be a skyline community with values
( f1(H1), f2(H1)), where f1(H1) = f ∗

1 and f2(H1) = f ∗
2 .

This is because f ∗
2 ismaximal among all the k-ĉores; thus, no

other k-ĉore that can dominate it on the x2 dimension. On the
other hand, f ∗

1 is maximal over all the k-ĉores with the same
f ∗
2 value, and thus, no k-ĉore exists that can dominate it.

Since the above recursive procedure ensures that the resulting
k-ĉore is maximal, it must be a skyline community.

Using the above method, we can find one skyline com-
munity which has the maximal f2 value of all the skyline
communities. The challenge is how to find the other sky-
line communities. We can tackle this challenge based on the
following result.

Lemma 1 Let H1 with values ( f1(H1), f2(H1)) be the sky-
line community that has the maximal f2 value over all the
skyline communities. The nodes in G whose x1 values are
no larger than f1(H1) cannot then be contained in the other
skyline communities.

Proof We prove this lemma by contradiction. Suppose that
there is a skyline community H (H �= H1) that contains a
node u with xu1 ≤ f1(H1). Then, H can be dominated by H1

because f1(H) ≤ f1(H1) and f2(H) < f2(H1), which is a
contradiction. ��

Based on Lemma 1, we can shrink the graph G by remov-
ing all the nodes whose x1 values are no larger than f1(H1).
We invoke the above procedure in the reduced graph to find
the next skyline community H2. It should be noted that H2

must be different from H1, because its f1 value is larger than
f1(H1). We can iteratively invoke this procedure to find all
the skyline communities until the reduced graph contains no
k-core.

Algorithm 2 implements the above procedure. In Algo-
rithm 2, I denotes the set of constraints. Initially, I = {x1 >

0, x2 > 0}, which means that no constraint is active (because
xui > 0 for all u ∈ V and i = 1, 2 by our assumption). F
denotes the set of fixed nodes. For the 2D case, there is no
need to fix nodes; thus, F = ∅. However, for the d > 2
case, we will use the set F to maintain the fixed nodes
(see Sects. 5 and 6), which cannot be deleted by the algo-
rithm. To find all the 2D skyline communities, we can invoke
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SkylineComm2D(G, {x1 > 0, x2 > 0},∅). The detailed
algorithm is described as follows.

First, Algorithm 2 invokes Algorithm 1 to calculate the
maximal f2 over all the skyline communities (line 1). Specif-
ically, Algorithm 1 first deletes all the invalid nodes (i.e.,
shrinks the graph, line 1 in Algorithm 1) and then computes
the maximal k-core H (line 2 in Algorithm 1). The algorithm
then recursively deletes the node with the smallest x2 value
until H = ∅ (lines 6–12 in Algorithm 1). The algorithm
returns the maximal f2 value over all the k-ĉores subject to
the constraints I.

After determining f2, Algorithm 2 iteratively computes
the skyline communities in lines 2–5. In line 3, Algorithm 2
first refines I by the constraint x2 ≥ f2. Here we use a
notation ∩̄ to denote the refinement operator. In particular,
if I = {x1 > 0, x2 > 0}, then Ĩ = I∩̄{x2 ≥ f2} =
{x1 > 0, x2 ≥ f2}, because the constraint x2 > 0 in I is
refined by x2 ≥ f2. Then, Algorithm 2 calls Algorithm 1
with the refined constraints Ĩ to calculate the maximal f1
value (line 3). It should be noted that in Algorithm 1, the
constraint x2 ≥ f2 ensures that all the nodes with x2 values
smaller than f2 are deleted. Therefore, the obtained f1 value
in line 3 (Algorithm 2) is the maximal f1 value over all the k-
ĉores with the same f2 value. By definition, there is a skyline
community that has values ( f1, f2). In line 4, the algorithm
adds ( f1, f2) into the answer set. Subsequently, in line 5,
the algorithm refines the constraint by (x1 > f1), because
nodes with x1 values no larger than f1 cannot be included
in the undiscovered skyline communities (see Lemma 1).
Then, the algorithm calculates the maximal f2 value subject
to the refined constraints Ĩ. After obtaining f2, the algorithm
iteratively applies the same procedure to compute the next
skyline community. The algorithm terminates when f2 = 0,
whichmeans that no k-core exist that satisfies the refined con-
straints. The following example illustrates how Algorithm 2
works.

Example 2 Consider the graph shown in Fig. 1. To illustrate
the SkylineComm2D algorithm,we consider two dimensions
x1 and x3 for each node (i.e., the first dimension is x1, and the
second dimension is x3). First, the algorithm computes the
maximal f3 by invoking theDimMax algorithm. In this exam-
ple, it is easy to check that f3 = 4. Then, the algorithm refines
the constraint by x3 ≥ 4 (line 3) and calculates the maximal
f1 value. In this example, the maximal f1 value is 6. Subse-
quently, the algorithm adds (6, 4) into the answer set which
corresponds to the skyline community {v2, v4, v5, v6}. After
that, the algorithm refines the constraint by x1 > 6, which
corresponds to delete all the nodes with x1 ≤ 6. And then,
the algorithm computes the next maximal f3 based on the
refined constraints. It is also easy to verify that f3 = 3. Using
the same procedure, we can obtain the next skyline commu-
nity {v1, v2, v3} with values (8, 3). Similarly, the algorithm

Algorithm 1 DimMax(G, I,F , d)

Input: A multi-valued graph G, constraints I, fixed nodes set F , d.
Output: The maximal value on the d-th dimension.

1: G ← delete all the nodes in G that violate the constraints I;
2: H ← compute the maximal k-core in G;
3: if F �= ∅ then
4: H ← the maximal k -̂core in H that contains F ;
5: Compute fd (H) based on Eq. (1);
6: fd ← fd (H); visi t(u) ← 0 for all u ∈ H ;
7: while H �= ∅ do
8: Let u ∈ H be the smallest-value node on the xd dimension;
9: f lag ← 1; f lag ← DFS(u);
10: if f lag = 0 then break;
11: if F �= ∅ then
12: H ← the maximal k -̂core in H that contains F ;
13: fd ← max{ fd , fd (H)};
14: return fd ;

15: Procedure DFS (u)
16: if u ∈ F then return 0; {// the fixed node cannot be deleted}
17: visi t(u) ← 1;
18: Let N (u, H) be the neighborhood of u in H ;
19: Let δ(u, H) be the degree of u in H ;
20: for all v ∈ N (u, H) and visi t(v) = 0 do
21: δ(v, H) ← δ(v, H) − 1;
22: if δ(v, H) < k then DFS(v);
23: Delete u from H ;
24: return 1;

Algorithm 2 SkylineComm2D(G, I,F)

Input: A multi-valued graph G, constraints I, fixed nodes set F .
Output: Skyline Communities in G.

1: f2 ← DimMax (G,I,F , 2);R ← ∅;
2: while f2 > 0 do
3: Ĩ ← I∩̄{x2 ≥ f2}; f1 ← DimMax (G, Ĩ,F , 1);
4: R ← R ∪ {( f1, f2)};
5: Ĩ ← I∩̄{x1 > f1}; f2 ← DimMax (G, Ĩ,F , 2);
6: return R;

refines the constraint in line 5 by x1 > 8, and then the algo-
rithm invokes DimMax to compute f3. In this case, f3 = 0;
thus, the algorithm terminates.

The correctness of Algorithm 2 is shown in the following
theorem.

Theorem 1 Algorithm 2 correctly computes all the 2D sky-
line communities.

Proof It is easy to show that the communities returned by
Algorithm 2 must be the skyline communities. To prove the
theorem, we need to show that all the skyline communi-
ties have been computed by Algorithm 2. Suppose to the
contrary that there is a skyline community H with values
( f1(H), f2(H)) that cannot be obtained by Algorithm 2. We
assume that Algorithm 2 iteratively outputs s skyline com-
munities which are H1, H2, . . . , Hs . Clearly, byAlgorithm 2,
we have f2(H1) > f2(H2) > · · · > f2(Hs). Also, by defi-
nition, we have f1(H1) < f1(H2) < · · · < f1(Hs). Since H
is a skyline community, it is a connected k-core and it must
be contained in the maximal k-core of graph G. By our algo-
rithm, f2(H1) is the maximal f2 value over all the connected
k-cores in G; thus, f2(H) < f2(H1). On the other hand, Hs

is the last skyline community computed by Algorithm 2, thus
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invoking Algorithm 1 with constraint x1 > f1(Hs) (lines 7–
8 in Algorithm 2) results in f2 = 0. That is to say, the graph
G cannot contain a k-core with f1 value larger than f1(Hs).
Therefore, we can conclude that f1(H) < f1(Hs). Since H
is a skyline community, we have f1(H1) < f1(H) < f1(Hs)

and f2(H1) > f2(H) > f2(Hs).
Furthermore, we claim that f1(H) and f2(H) must sat-

isfy that f1(Hi ) < f1(H) < f1(Hi+1) and f2(Hi ) >

f2(H) > f2(Hi+1) for a certain Hi (i = 1, . . . , s − 1). We
can prove this statement by a contradiction. Since f1(H1) <

f1(H) < f1(Hs), there exists a skyline community Hi for
i = 1, . . . , s − 1 such that f1(Hi ) < f1(H) < f1(Hi+1).
Suppose to the contrary that f2(Hi ) > f2(H) > f2(Hi+1)

does not hold. Since f2(H1) > f2(H) > f2(Hs), there exists
a skyline community Hj for j = 1, . . . , s−1 and j �= i such
that f2(Hj ) > f2(H) > f2(Hj+1). Assume without loss of
generality that i < j . Then, we have f1(Hi ) < f1(H) <

f1(Hj ) and f2(Hj ) > f2(H). As a result, Hj dominates H ,
which is a contradiction.

After computing Hi (line 6 in Algorithm 2), the algorithm
invokes Algorithm 1 to calculate f2(Hi+1) with constraint
x1 > f1(Hi ) (lines 7–8 in Algorithm 2). By Algorithm 1,
we know that f2(Hi+1) is the maximal f2 value over all
connected k-cores whose f1 values are larger than f1(Hi ).
Since H is a skyline community with f1(H) > f1(Hi ), we
have f2(H) < f2(Hi+1), which contradicts to f2(Hi ) >

f2(H) > f2(Hi+1). Putting it all together, we can conclude
that Algorithm 2 outputs all skyline communities. ��

We analyze the time and space complexity of Algorithm 2
in the following theorem.

Theorem 2 Let s be the number of skyline communities in
G. Then, the worst-case time and space complexity of Algo-
rithm 2 is O(s(m + n)) and O(m + n + s), respectively.

Proof First, the time complexity of Algorithm 1 is O(m+n),
because we only need to scan the graph once. Since Algo-
rithm 2 invokes Algorithm 1 s times, the time complexity
of Algorithm 2 is O(s(m + n)). For the space complexity,
the algorithm only needs to store the graph and some auxil-
iary arrays (e.g., visi t) which consume O(m+n) space, and
also the algorithm needs to maintain the results which use
O(s) space. Therefore, the space complexity of Algorithm 2
is O(m+n+ s), which is linear to the graph size and answer
size. ��

Note that in the 2D case, the total number of skyline com-
munities s is bounded by n, because the number of f2 values
of the skyline communities is bounded by n. Thus, the time
and space complexity of Algorithm 2 is also bounded by
O(n(m + n)) and O(m + n), respectively. In our experi-
ments, we will show that s is typically very small, and thus,
Algorithm 2 is very efficient in practice.

5 The basic algorithm for d ≥ 3

Recall that Algorithm 2 can iteratively compute all the 2D
skyline communities once it has found the first skyline com-
munity. To find the first skyline community, Algorithm 2
computes the maximal f2 value and applies a similar proce-
dure to determine the f1 value. Unfortunately, this idea does
not work in the case of d ≥ 3. This is because for the d ≥ 3
case, we do not know how to determine the remaining val-
ues ( f1 and f2) of a skyline community after computing the
maximal f3 value. Furthermore, even if we can find the first
skyline community for the d ≥ 3 case, it is still quite nontriv-
ial to find all the remaining skyline communities. Below, we
develop a basic algorithm to tackle these challenges based
on an in-depth analysis of the skyline community model. For
convenience, we first devise a basic algorithm to handle the
3D case (i.e., d = 3), and then we extend this algorithm to
handle the d > 3 case.

5.1 Handling the d = 3 case

The dimension reduction idea. Our algorithm is based on
a dimension reduction idea which involves three steps. First,
we derive all the possible f3 values that the skyline communi-
ties may have on the x3 dimension. Second, for each possible
f3 value, denoted by f ∗

3 , we find all the 2D skyline commu-
nities on the x1 and x2 dimensions such that the f3 values of
these skyline communities equal f ∗

3 . Here we refer to a sky-
line community based on the x1 and x2 dimensions as a 2D
skyline community, and all those based on three dimensions
as 3D skyline communities. Finally, we merge the resulting
skyline communities for all possible f3 values, and invoke a
traditional skyline algorithm [5,18] to determine all the 3D
skyline communities.

Let F3 be the set of all the possible f3 values. For the first
step, a naive solution is to set F3 to be the set of all the x3
values of the nodes inG, because the f3 values of all the sky-
line communities must take from the set of all the x3 values
of nodes. The second step can be implemented as follows.
We remove all the nodes whose x3 values are smaller than
f ∗
3 , and fix the node u with xu3 = f ∗

3 (a fixed node denotes
that the node cannot be deleted by the algorithm). Note that
only one node u with xu3 = f ∗

3 can be fixed, because all the
x3 values form a total order by our assumption. We invoke
SkylineComm2D with constraint I = {x3 ≥ f ∗

3 } and fixed-
point set F = {u} to compute the 2D skyline communities
on the x1 and x2 dimensions. It can be easily shown that the
resulting communities are 2D skyline communities (on the
x1 and x2 dimensions) with f3 values equaling f ∗

3 .

An improved implementation. The naive implementation
is inefficient because it needs to invoke the SkylineComm2D
algorithm |F3| = n times. Here, we propose an improved
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implementation based on an interesting connection between
our problem and the influential community search problem
[20].

Recall that the influential community model is tailored
to the network with only one numerical attribute [20]. In a
multi-valued network with d numerical attributes, the influ-
ential community can be defined on each dimension xi
(i = 1, . . . , d). Specifically, on the xi dimension, a com-
munity H is called an influential community [20] if (1) it is a
connected k-core (i.e., k-ĉore), and (2) there does not exist a
k-ĉore H ′ such that H ′ contains H and fi (H ′) = fi (H) (see
Eq. 1). Let Ti be the set of values of all the influential com-
munities defined on the xi dimension. Ti can be computed
using the influential community search algorithm described
in Algorithm 3 [20]. In particular, Algorithm 3 iteratively
deletes the smallest-value node on the xi dimension, and
records the fi values of the current maximal k-ĉore which
corresponds to the value of an influential community [20].

Note that both the skyline communities and influential
communities are k-ĉores satisfying amaximal property; and
both the fi values of the skyline communities and the values
of the influential communities on the xi dimension (i.e., Ti )
are defined by the “min” operator (Eq. 1). Intuitively, the fi
values of the skyline communities should be contained in Ti
because Ti consists of all the possible values of the maximal
k-ĉores defined by the “min” operator. Indeed, Lemma 2
shows that the fi values of the skyline communities must be
taken from Ti .

Lemma 2 For each dimension xi (i = 1, . . . , d), the fi val-
ues of all the skyline communities are contained in the set Ti
which is computed by Algorithm 3.

Proof We prove the lemma by contradiction. Suppose to the
contrary that there is a skyline community H that fi (H) /∈ Ti .
Recall that Ti denotes the set of the values of all the influential
communities that are computed based on the xi dimension
(see Algorithm 3). We assume without loss of generality that
there are t different elements in Ti and Ti = { f 1i , . . . , f ti }
with f 1i <, · · · ,< f ti . Then, by definition, it is easy to show
that f 1i < fi (H) < f ti . Thus, there exists j (1 ≤ j ≤ t − 1)

such that f j
i < fi (H) < f j+1

i . Let G j be the graph that
is obtained by removing all the nodes whose xd values are
smaller than f j

i , and Hj be the maximal k-core of G j . Let

u ∈ Hj be the node with xui = f j
i (i.e., u ∈ Hj is the

smallest-value node in the xi dimension). Since H is a k-
core with fi (H) > f j

i , H must be contained in Hj and also
H cannot contain node u. On the other hand, since fi (H) <

f j+1
i , H cannot be contained in Hj+1. By definition, if we

remove u from Hj and then compute the maximal k-core,
we can obtain Hj+1. Since H is a k-core and it does not
contain u, and thus, it must be contained in Hj+1, which is
a contradiction. ��

Algorithm 3 [20]InfComm(G, d)

Input: A multi-valued graph G, d.
Output: All the fd values.

1: H ← the maximal k-core of G; Td ← ∅;
2: while H �= ∅ do
3: Let H̃ be the maximal connected component of H with smallest fd value,

denoted by f ∗d ;
4: Td ← Td ∪ { f ∗d }; Let u ∈ H̃ be the node that xud = f ∗d ;
5: InfCommDFS(u);
6: return Td ;

7: Procedure InfCommDFS(u)
8: for all v ∈ N (u, H) do
9: Delete edge (u, v) from H ;
10: if δ(v, H) < k then InfCommDFS(v);
11: Delete node u from H ;

Algorithm 4 Basic3D(G, I,F)

Input: A multi-valued graph G, constraints I, fixed nodes set F .
Output: Skyline Communities in G.

1: F3 ← InfComm(G, 3);R ← ∅;
2: for all f3 ∈ F3 do
3: Let u be the node that xu3 = f3; F̃ ← F ∪ {u};
4: Ĩ ← I∩̃{x3 ≥ f3};
5: T ← SkylineComm2D(G, Ĩ, F̃); {// Compute skyline communities based on

the first two dimensions.}
6: for all ( f1, f2) ∈ T do
7: R ← R ∪ { f1, f2, f3};
8: return Skyline(R);

Based on Lemma 2, we can set F3 = T3 in our algorithm.
Since |T3| ≤ n and can be substantially smaller than n in
practice [20], this improved implementation is much more
efficient than the naive implementation.

Our algorithm is depicted in Algorithm 4. In line 1, we
compute F3 by invoking Algorithm 3 based on the x3 dimen-
sion. In lines 2–7, we calculate the 2D skyline communities
for each f3 ∈ F3. The algorithm first fixes the node u that
xu3 = f3 (line 3), because the node u must be contained
in all the 2D skyline communities whose values on the x3
dimension are equal to f3. In line 4, the algorithm refines
the constraint I by {x3 ≥ f3} which indicates that the nodes
whose x3 values are smaller than f3 will be removed. The
algorithm then invokes Algorithm 2 to compute the 2D sky-
line communities based on the x1 and x2 dimensions (line 5).
Lastly, the algorithm combines the results (lines 6–7), and
applies a traditional skyline algorithm to determine all the 3D
skyline communities (line 8). The following example illus-
trates how Algorithm 4 works.

Example 3 Consider the graph shown inFig. 1. The algorithm
first obtains F3 = {3, 4} by invoking Algorithm 3. Then, for
f3 = 3, the algorithm invokes Algorithm 2 with constraint
I = {x3 ≥ 3} andF = {v3} to compute the 2D skyline com-
munities based on the x1 and x2 dimensions (lines 3–5). In
this example, we can obtain only one 2D skyline community
which is {v1, v2, v3} with values (8, 14). The algorithm adds
(8, 14, 3) into the answer set R (lines 6–7). Similarly, for
f3 = 4, the algorithmalso obtains one2Dskyline community
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Algorithm 5 BasicHighD(G, I,F , d)

Input: A multi-valued graph G, constraints I, fixed nodes set F .
Output: Skyline Communities in G.

1: if d = 3 then return Basic3D(G,I,F);
2: Fd ← InfComm(G, d); R ← ∅;
3: for all fd ∈ Fd do
4: Let u be the node with xud = fd ; F̃ ← F ∪ {u};
5: Ĩ ← I∩̃{xd ≥ fd };
6: T ← BasicHighD(G, Ĩ, F̃ , d − 1);
7: for all ( f1, · · · , fd−1) ∈ T do
8: R ← R ∪ { f1, · · · , fd−1, fd };
9: return Skyline(R);

which is {v2, v4, v5, v6} with values (6, 8). The algorithm
adds (6, 8, 4) into R. Finally, the algorithm computes the
skyline overRwhich is the set {(8, 14, 3), (6, 8, 4)}. Hence,
in the graph in Fig. 1, we obtain two 3D skyline communities.

We analyze the correctness and complexity ofAlgorithm4
in Theorem 3.

Theorem 3 Algorithm 4 correctly finds all the 3D skyline
communities, and the worst-case time and space complexity
of Algorithm 4 is O(n2(m + n)) and O(n2), respectively.

Proof First, we prove the correctness of Algorithm 4. By
Lemma 2, F3 (F3 = T3) contains all the possible f3 values
that the 3D skyline communities may have. For each f3 ∈
F3, the algorithm calculates all the 2D skyline communities
whose values in the x3 dimension equal f3. As a result, all the
3D skyline communities must be contained in the union of
the sets of all those 2D skyline communities. By computing
the skyline in the union of these sets, the algorithm can obtain
all the 3D skyline communities.

Second, we analyze the complexity of Algorithm 4. For
the time complexity, the algorithm takes O(m + n) time
to compute F3. Then, for each f3 ∈ F3, the algorithm
invokes a SkylineComm2D algorithm which takes at most
O(n(m + n)) time. The total time cost taken in the “for”
loop (line 3) is therefore O(n2(m + n)) in the worst case.
Since the size of T is bounded by n, the total size of R
in line 7 is bounded by O(n2). Finally, the algorithm calls
a traditional skyline algorithm to compute the final results
which consumes O(n2 log n) [5,18], because there are at
most O(n2) 3D points recorded in R. The total time com-
plexity is O(n2(m + n)). For the space complexity, we can
easily show that the algorithm uses O(m + n + n2) space,
which is dominated by O(n2). ��

5.2 Handling the d > 3 case

We generalize Algorithm 4 to handle the d > 3 case in
Algorithm 5. The general procedure is very similar to Algo-
rithm 4. The main difference is that the algorithm recursively

invokes itself with a parameter d −1 to compute the (d −1)-
dimensional skyline communities (line 6). The recursive
procedure terminateswhen d = 3 (line 1), becausewe invoke
Algorithm 4 to compute the 3D skyline communities. The
correctness analysis of Algorithm 5 is also similar to that of
Algorithm 4; thus, we omit the details for brevity. Below, we
analyze the complexity of Algorithm 5.

Theorem 4 For d ≥ 3, the worst-case time and space com-
plexity of Algorithm 5 is O(nd−1(m+n+ (d−1) logd−3 n))

and O(nd−1), respectively.

Proof We start by analyzing the time complexity. It is easy
to show that the total number of skyline points in the
d-dimensional discrete space is bounded by O(nd−1) for
d ≥ 2. Here, the discrete space means that the skyline
points in each dimension can only take n discrete values.
Let T (d) be the worst-case time complexity of Algorithm 5.
Then, T (d) = n × T (d − 1) + nd−1 logd−3(nd−1), where
nd−1 logd−3(nd−1) denotes the time cost of computing the
final skyline communities by using the traditional skyline
algorithm [18] (for d ≥ 3). Then, we can obtain that
T (d) = O(nd−1(m + n + (d − 1) logd−3 n)). The space
complexity is dominated by the total number of all the (d−1)-
dimensional skyline communities that are recorded in R,
which is O(nd−1). ��

Note that the above complexity is theworst-case complex-
ity. In practice, since the number of skyline communities in
the d-dimensional space is much smaller than O(nd−1) and
also d is very small (e.g., d ≤ 5), our basic algorithm still
works well for many real-world networks as shown in the
experiments.

5.3 A pruning rule

We present a simple but efficient pruning rule to speed up
the basic algorithms. When we fix the node u with xud = fd
in both Algorithm 4 (line 3) and Algorithm 5 (line 4), we
can use the d-dimensional values of node u for pruning, i.e.,
Xu = {xu1 , . . . , xud }. Since all the (d − 1)-dimensional sky-
line communities computed by fixing u must contain u, the
values of u form an upper bound of all those skyline com-
munities. Therefore, when fixing u, we first check whether u
is dominated by the already computed skyline communities.
If this is the case, we do not need to recursively invoke the
algorithm to compute the (d − 1)-dimensional skyline com-
munities (line 5 in Algorithm 4 and line 6 in Algorithm 5),
because those communities are definitely dominated by the
already computed skyline communities. Using this pruning
rule, we can save a number of recursive calls in the basic
algorithms. To implement this pruning rule, we first sort the
set Fd in a decreasing order and then compute the skyline
communities for each fd ∈ Fd following this order. When
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we fix u (line 3 in Algorithm 4 and line 4 in Algorithm 5), we
check whether (xu1 , . . . , xud−1) is dominated by the already
computed (d − 1)-dimensional skyline communities. If this
is the case, u is dominated because the fd values of all the
already computed (d −1)-dimensional skyline communities
are larger than xud , and thus, there is no need to recursively
invoke the algorithm to calculate the (d − 1)-dimensional
skyline communities with fixed u.

6 The space-partition algorithm

Although the pruning rule significantly accelerates the basic
algorithm, it is still inefficient for the d > 3 case because it
needs to compute a large number of invalid skyline commu-
nities. In this section, we propose a more efficient algorithm
based on a novel space-partition idea. The worst-case time
complexity of our new algorithm relies mainly on the num-
ber of skyline communities, i.e., the answer size; thus, it is
very efficient if the answer size is not very large. Unlike the
basic algorithm, the new algorithm outputs the skyline com-
munities progressively, and no invalid skyline community is
generated. This progressive feature is very useful when the
applications only need to compute part of the skyline com-
munities. Below, we first consider the d = 3 case, and then
we extend our algorithm to handle the d > 3 case.

6.1 Handling the d = 3 case

The key idea. The basic idea of our new algorithm is that
we compute the skyline communities following the decreas-
ing order of the f3 values of the 3D skyline communities. In
other words, we first compute the set of 3D skyline commu-
nities that have the largest f3 value, and then calculate the
3D skyline communities having the second-largest f3 value,
etc. The challenge is how to implement this procedure with-
out computing invalid skyline communities. Our solution is
detailed as follows.

Let H be the set of 3D skyline communities that have
the maximum f3 value. H can be easily computed by the
following procedure. First, we invoke theDimMax algorithm
(Algorithm 1) with constraint I = {x1 > 0, x2 > 0} to
derive the largest f3 value in G, denoted by f ∗

3 . Then, we
fix the node u with xu3 = f ∗

3 and invoke SkylineComm2D
with constraint I = {x1 > 0, x2 > 0} and fixed-point set
F = {u} to compute the 2D skyline communities on the x1
and x2 dimensions. Clearly, all the resulting communities are
valid 3D skyline communities having the largest f3 value.

Since f ∗
3 is maximum, the f3 values of the remaining 3D

skyline communities in G must be smaller than f ∗
3 . Hence,

the ( f1, f2) values of the remaining 3D skyline communities
cannot be dominated by those of the skyline communities

in H. By the skyline property, all the ( f1, f2) values of the
3D skyline communities inH form a staircase-like shape in
the 2D space. For ease of understanding, we use an example
shown in Fig. 2a to illustrate our idea. In this example, we
have three 3D skyline communities in H = {H1, H2, H3},
and the label “*” denotes the 3D skyline communities on
the x1 and x2 dimensions. Clearly, the space below the
staircase-like shape is dominated by the skyline communities
inH which can be safely pruned. The ( f1, f2) values of the
remaining 3D skyline communities must be located on the
top of the staircase-like shape.

Obviously, the maximum f3 value of the remaining 3D
skyline communities is the second-largest f3 value over all
the 3D skyline communities. However, it is challenging to
derive the maximum f3 value of the remaining 3D skyline
communities. This is because (1) the ( f1, f2) values of the
remaining 3D skyline communities are located on the top of
the staircase-like shape which forms an irregular 2D space
(see Fig. 2a), and (2) we cannot directly apply DimMax to
compute themaximum f3 value given that the ( f1, f2) values
are located in such an irregular 2D space.

To overcome this challenge, we propose a space-partition
approach. The key step of our approach is to partition the
irregular 2D space (the 2D space on the top of the staircase-
like shape) into several overlapped regular 2D subspaces, in
which the maximum f3 value can be computed by DimMax.
Formally, the regular 2D space is defined as follows.

Definition 3 Given two dimensions x1 and x2, a 2D space is
called a regular 2D space if and only if it can be represented
by a pair of constraints (x1 > f1, x2 > f2), where ( f1, f2)
is a 2D point.

Note that the above definition of the regular 2D space can
be directly extended to the high-dimensional case. Again,
we use the example shown in Fig. 2 to illustrate the space-
partition idea. In this example, the irregular 2D space in
Fig. 2a is divided into four overlapped regular subspaces as
shown in Fig. 2b where each 2D point Ci corresponds to a
regular subspace.

For a regular 2D space represented by (x1 > f1, x2 > f2),
we can compute the maximum f3 value in that space by
invoking DimMax with constraint I = {x1 > f1, x2 > f2}.
As a result, we are able to derive the maximum f3 value
in the irregular 2D space, denoted by f̃ ∗

3 , using such a
space-partition method. Furthermore, we can also identify
the regular 2D subspaces in which the maximum f3 value
achieves f̃ ∗

3 . After obtaining f̃ ∗
3 and the corresponding reg-

ular 2D subspaces, the SkylineComm2D algorithm can be
used to compute the 2D skyline communities in that regular
2D subspace. We claim that the computed 2D skyline com-
munities are also the 3D skyline communities. The reasons
are as follows. First, the ( f1, f2) values of these 2D skyline
communities cannot be dominated by the previously com-
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(a) (b)

Fig. 2 Illustration of the space-partition idea (color online)

Algorithm 6 The Space-Partition Framework
1: Let P be the initial 2D space represented by (x1 > 0, x2 > 0);
2: R ← ∅;
3: while P �= ∅ do
4: S ← partition P into a set of overlapped regular subspaces;
5: ( f ∗3 ,T ) ← identify the largest f3 value ( f ∗3 ) and the corresponding regular

subspaces (T ) in S by the DimMax algorithm;
6: H ← compute the set of 2D skyline communities in T by SkylineComm2D;
7: R ← R ∪ H;
8: P ← prune the 2D space dominated byH in P;
9: return R;

puted skyline communities (i.e.,H), because they are located
on the top of the staircase-like shape formed by the already
computed 3D skyline communities (based on the x1 and x2
dimensions). Second, since our algorithm computes the 3D
skyline communities following the decreasing order of the f3
values, the f3 values of the undiscovered 3D skyline commu-
nities must be smaller than f̃ ∗

3 . As a result, all the computed
2D skyline communities are valid 3D skyline communities.
Once we obtain a set of new 3D skyline communities, we can
iteratively use the same space-partition method to compute
the remaining 3D skyline communities. The general frame-
work of our space-partition method is shown in Algorithm 6.

To implement our framework, the remaining question
is how can we divide the irregular 2D space into several
overlapped regular 2D subspaces? Below, we define two
important concepts called MIN skyline and corner point
which will be used to partition the irregular 2D space.

Definition 4 Let L be a set of d-dimensional points. The
MIN skyline of L, denoted by A, contains all the points
in L that satisfy the following condition. For any point
x = (x1, . . . , xd) ∈ A, there does not exist a point y =
(y1, . . . , yd) ∈ L\A such that yi ≤ xi for all i = 1, . . . , d
and yi < xi for a certain i = 1, . . . , d.

Definition 5 Let R be a set of skyline points in the d-
dimensional space. Let B be the set of all the cross points
in the boundary of the d-dimensional staircase-like shape
formed by the skyline. The corner point set C is the MIN
skyline computed over all the cross points in B.

Reconsider the graph shown in Fig. 2a. There are seven
cross points in the boundary of the staircase-like shape
(including three skyline points). We compute the MIN sky-
line over all the cross points. Clearly, we can obtain four

Algorithm 7 New3D(G, I,F)

Input: A multi-valued graph G, constraints I, fixed nodes set F .
Output: Skyline Communities in G.

1: Result R ← ∅; Priority Queue Q ← ∅; C ← {(0, 0)};
2: if DimMax(G,I,F , 3) > 0 then
3: Q.Push((0, 0),DimMax(G,I,F , 3));
4: while Q �= ∅ do
5: c3 ← Q.MaxVal(); S ′ ← ∅;
6: while Q.MaxVal() = c3 do
7: ((c1, c2), c3) ← Q.Pop(); {// c3 is the priority of (c1, c2) ∈ Q}
8: Ĩ ← I∩̄{x1 > c1, x2 > c2};
9: Let u be the node that xu3 = c3; F̃ ← F ∪ {u};
10: Stmp ← SkylineComm2D(G, Ĩ, F̃);
11: S ′ ← S ′ ∪ Stmp ;
12: for all (c1, c2) ∈ S ′ do
13: R ← R ∪ {(c1, c2, c3)};
14: for all s′ ∈ S ′ do C ← UpdateCornerPoints(C, s′, 2);
15: for all (c1, c2) ∈ C do
16: Ĩ ← I∩̄{x1 > c1, x2 > c2};
17: if (c1, c2) /∈ Q and DimMax(G, Ĩ,F , 3) > 0 then
18: Q.Push((c1, c2),DimMax(G, Ĩ,F , 3));
19: return R;

Algorithm 8 UpdateCornerPoints(C, s′, d)

Input: Corner Points C, Skyline Point s′ = (x ′
1, . . . , x

′
d ), d.

Output: Updated Corner Points by Adding s′.

1: for i = 1 to d do
2: C′

i ← ∅;
3: for all (c = (x1, . . . , xd )) ∈ C s.t. x j < x ′

j for 1 ≤ j ≤ d do

4: C ← C \ {c}; replace xi with x ′
i in c;

5: C′
i ← C′

i ∪ {c};
6: C′

i ← Skyline(C′
i , d,MIN); {// computed by classic skyline algorithms}

7: return C ∪ C′
i ∪ . . . ∪ C′

d ;

corner points which are labeled by “•” in Fig. 2b. Note that
the coordinates of the corner points can be determined by the
( f1, f2) values of the 3D skyline communities. For exam-
ple, in Fig. 2b, the coordinates of the corner point C3 can
be determined by the 3D skyline communities H2 and H3,
which are ( f1(H2), f2(H3)). Based on the corner points, we
can easily divide the irregular 2D space into several over-
lapped regular 2D subspaces as illustrated in Fig. 2b. Note
that each corner point corresponds to a regular 2D subspace.
For the corner point C3 = ( f1(H2), f2(H3)) for example,
the corresponding regular 2D subspace can be represented
by (x1 > f1(H2), x2 > f2(H3)).

Implementationdetails.Thedetailed implementation of our
algorithm is shown in Algorithm 7. In Algorithm 7, we use
a priority queue Q to maintain all the regular 2D subspaces
where the priority of the subspace is the maximum f3 value
in that subspace. Specifically, in the priority queueQ, we use
a pair ((c1, c2), c3) to denote a regular 2D subspace, where
(c1, c2) denotes the corner point corresponding to the regu-
lar 2D subspace and c3 is the priority of that subspace (i.e.,
the maximal f3 value in that subspace). Initially, the algo-
rithm pushes the initial regular 2D space into Q (lines 1–3).
Then, the algorithm iteratively computes the skyline commu-
nities based on the best-first strategy (lines 4–18). Note that
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the algorithm can derive skyline communities following a
decreasing order of the f3 values based on the best-first strat-
egy. In each iteration, the algorithm first finds the maximum
priority fromQ and sets c3 as the maximum priority (line 5).
The algorithm then iteratively pops the regular 2D space
whose priority equals c3 fromQ (line 7). For a popped regular
2D space ((c1, c2), c3), the algorithm refines the constraint
I by {x1 > c1, x2 > c2} (line 8), and fixes the node u with
xu3 = c3 (line 9). The algorithm invokes SkylineComm2D
with the refined constraint and fixed node u to compute the
2D skyline communities (line 10). All the computed 2D sky-
line communities are recorded in S ′ (lines 10–11). Since all
the computed 2D skyline communities must be 3D skyline
communities by the best-first strategy, the algorithm adds
all these computed 2D skyline communities into the answer
set R (lines 12–13). The algorithm then updates the corner
points based on the newly calculated skyline communities in
this iteration (line 14).

To compute the corner points, we devise an incremental
algorithm which is depicted in Algorithm 8. Specifically, for
each skyline community s′ ∈ S ′, the algorithm incremen-
tally updates the previously computed corner points set C
(line 14 in Algorithm 7) by invoking Algorithm 8. Clearly, if
the previously computed corner point c is completely domi-
nated by the skyline point s′, this corner point must be below
the staircase-like shape formed by the updated skyline after
adding s′. Here, we call a point x = (x1, . . . , xd) completely
dominating a point y = (y1, . . . , yd) if and only if xi > yi
for all i = 1, . . . , d. For example, consider the corner points
shown in Fig. 3a. The red “*” denotes the newly added sky-
line point s′. In this example, there is one corner point that
is completely dominated by s′. Let C̄ be the set of corner
points completely dominated by s′. We remove all the corner
points in C̄, because these corner points are no longer the
cross points. The completely dominated corner points in C̄
can be used to compute the new cross points generated by
adding s′. For each dominated corner point c̄ ∈ C̄, we obtain
a cross point by replacing the xi coordinate of c̄ with that of
s′ and keeping the other coordinates of c̄ unchanged. Clearly,
for each completely dominated corner point, we obtain d new
cross points. After obtaining all the cross points, we compute
theMIN skyline to get the updated corner points. Reconsider
the example shown in Fig. 3. In this example, we obtain two
cross points which are also the corner points as shown in
Fig. 3b. Algorithm 8 details this procedure. In Algorithm 8,
we compute the MIN skyline in each dimension (line 7 in
Algorithm 8), because the cross points generated in different
dimensions cannot be dominated w.r.t. each other. Moreover,
the remaining corner points in C (the corner points that are
not completely dominated by s′) cannot be dominated by the
newly computed corner points. Thus, the algorithm outputs
the union of all corner points, forming a MIN skyline.

(a) (b)

Fig. 3 Illustration of the corner points updating

After updating C, Algorithm 7 pushes the newly gener-
ated regular spaces intoQ (lines 15–18) and then iteratively
computes the skyline communities based on the best-first
strategy, until Q = ∅ and the algorithm terminates. The fol-
lowing example illustrates how Algorithm 7 works.

Example 4 Reconsider the graph shown in Fig. 1. First, the
algorithm pushes ((0, 0), 4) intoQ, as the maximal f3 value
in the initial regular space (i.e., (x1 > 0, x2 > 0)) is
4. Then, the algorithm pops ((0, 0), 4) from Q (line 7).
Subsequently, the algorithm fixes node v4 and invokes the
SkylineComm2D algorithmwith constraint (x1 > 0, x2 > 0)
to calculate the 2D skyline communities. In this case, we
obtain one 2D skyline community which is {v2, v4, v5, v6}
with value (6, 8). Then, the algorithm adds (6, 8, 4) into the
answer set as {v2, v4, v5, v6} is also a 3D skyline community.
The algorithm then updates the corner points C (line 14).
In this example, we obtain two corner points which are
(6, 0) and (0, 8), i.e., C = {(6, 0), (0, 8)}. For the corner
point (6, 0), the algorithm invokes DimMax with constraint
(x1 > 6, x2 > 0) to compute the maximal f3 value. In this
case, we get the maximal f3 value of 3. Similarly, for the
corner point (0, 8), we obtain the maximal f3 value of 3.
Then, the algorithm pushes ((6, 0), 3) and ((0, 8), 3) intoQ.
Likewise, in the second iteration, we can obtain a skyline
community (v1, v2, v3). After the second iteration, the algo-
rithm terminates as Q = ∅. Therefore, we find two skyline
communities {v2, v4, v5, v6} and (v1, v2, v3). This result is
consistent with our previous result obtained by Algorithm 4.

The correctness of Algorithm 7 is analyzed below.

Theorem 5 Algorithm 7 correctly computes all the 3D sky-
line communities.

Proof First, we prove that the computed skyline communi-
ties are correct 3D skyline communities. Let Ri be the set
of skyline communities computed in the i-th iteration. By
the best-first strategy, the algorithm computes the 3D skyline
communities following the decreasing order of the f3 val-
ues. Hence, in the i-th iteration, the skyline communities in
Ri cannot be dominated by the undiscovered skyline com-
munities (because the f3 values of the skyline communities
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in Ri must be larger than those of the undiscovered skyline
communities). On the other hand, the skyline communities in
Ri cannot be dominated by the skyline communities in R j

with j < i , because the previously calculated skyline com-
munities cannot dominate the skyline communities in Ri in
terms of the first two dimensions. Second, since the proposed
space-partition algorithm does not miss any subspace, all the
skyline communities must be discovered by our algorithm.

��
Theorem 6 shows the complexity of Algorithm 7.

Theorem 6 Let s be the number of 3D skyline communities.
The worst-case time and space complexity of Algorithm 7 is
O(s2(m + n)) and O(m + n + s), respectively.

Proof First, we analyze the time complexity of the algo-
rithm. Since each skyline point generates at most two new
corner points in the 2D space by Algorithm 8, the total num-
ber of corner points generated by our algorithm is bounded
by O(s). For each corner point, the algorithm invokes the
SkylineComm2D algorithm at most once, which takes at
most O(s(m+n)) time. Thus, the total cost taken in lines 6–
11 is bounded by O(s2(m+n)). In addition, for each skyline
point, the time cost to update the corner points in line 14 is
O(s). Thus, the total cost taken in line 14 can be bounded by
O(s2), which is dominated by O(s2(m + n)). It is also easy
to show that the total cost taken in lines 15–18 is bounded by
O(s2(m + n)). It can thus be seen that the worst-case time
complexity of Algorithm 7 is O(s2(m + n)). For the space
complexity, we need to maintain the graph and the priority
Q, which consume O(m + n + s) space in total. ��

An improved 3D algorithm. Due to the overlapped space-
partition method, a skyline community may be recomputed
in Algorithm 7 if its ( f1, f2) values are located in two regular
2D subspaces with the same priority (see lines 6–11 in Algo-
rithm 7). To avoid such redundant computations, we propose
an improved algorithm to ensure that no skyline community
is recomputed.

The skyline community clearly cannot be recomputed in
two regular 2D subspaces with different priorities in Algo-
rithm 7; thus, we need to avoid redundant computations
when the regular 2D subspaces have the same priority. Let
P = {((c11, c12), c3), . . . , ((ct1, ct2), c3)} be the set of regular
2D spaces with the same priority c3. Suppose without loss
of generality that c3 is the current maximum priority in Q
and c11 > · · · > ct1. Then, the improved algorithm iteratively
computes the skyline communities in the regular spaces in
P following the decreasing order of the c1 values. To avoid
redundant computations, the algorithm maintains the maxi-
mum c2 value denoted by c′

2 that it has found so far. Note that
since the c1 values of the regular spaces follow decreasing
order, the c2 valuesmust follow increasing order (because the

Algorithm 9 ImprovedNew3D(G, I,F)

Input: A multi-valued graph G, constraints I, fixed nodes set F .
Output: Skyline Communities in G.

1: Result R ← ∅; Priority Queue Q ← ∅; C ← {(0, 0)};
2: if DimMax(G,I,F , 3) > 0 then
3: Q.Push((0, 0),DimMax(G,I,F , 3));
4: while Q �= ∅ do
5: c3 ← Q.MaxVal(); c′2 ← 0; S ′ ← ∅;
6: while Q.MaxVal() = c3 do
7: ((c1, c2), c3) ← Q.Pop();

{// following the decreasing order of the c1 value}
8: c′2 ← max(c′2, c2); Ĩ ← I∩̄{x1 > c1, x2 > c′2};
9: Let u be the node that xu3 = c3; F̃ ← F ∪ {u};
10: Stmp ← SkylineComm2D(G, Ĩ, F̃);
11: c′2 ← max(c′2,max{x ′

2|(x ′
1, x

′
2) ∈ Stmp});

12: S ′ ← S ′ ∪ Stmp ;
13: for all (c1, c2) ∈ S ′ do
14: R ← R ∪ {(c1, c2, c3)};
15: for all s′ ∈ S ′ do C ← UpdateCornerPoints(C, s′, 2);
16: for all (c1, c2) ∈ C do
17: Ĩ ← I∩̄{x1 > c1, x2 > c2};
18: if (c1, c2) /∈ Q and DimMax(G, Ĩ,F , 3) > 0 then
19: Q.Push((c1, c2),DimMax(G, Ĩ,F , 3));
20: return R;

corner points form a skyline). Then, the algorithm fixes node
u with xu3 = c3, and invokes the SkylineComm2D algorithm
with constraint (x1 > ci1, x2 > c′

2) and fixed node u to com-
pute the 2D skyline communities. For all the computed 2D
skyline communities Stmp, the algorithm finds the maximum
c2 value inStmp and updates c′

2 if it is larger than c
′
2. Based on

this, the algorithm can prune the dominated space in the sub-
sequent regular 2D spaces, which thus avoids recomputing
the skyline communities.

For ease of understanding, we use an example to illustrate
the idea of our improved algorithm. Consider the example
shown in Fig. 4. Suppose that we have two regular spaces that
have the same priority as shown in Fig. 4a. LetC1 = (c11, c

2
1)

and C2 = (c12, c
2
2) be the corner points of these two regu-

lar spaces, respectively. For convenience, we refer to these
two regular spaces as space C1 and space C2. Following the
decreasing order of c1 value, the algorithm first pops C1

from the priority queue Q, and then computes the skyline
communities in the space C1. In this example, three skyline
communities Stmp = {H1, H2, H3} have been obtained in
the regular space C1. The algorithm updates c′

2 by f2(H1),
because f2(H1) is the largest value among all the f2 values
of the skyline communities. In the second iteration, the algo-
rithm pops C2 fromQ. Since c22 < c′

2, the algorithm invokes
SkylineComm2Dwith constraint (x1 > c12, x2 > c′

2) to com-
pute the skyline communities in the regular space C2. Due to
the constraint x2 > c′

2, the shading area in the regular space
C2 in Fig. 4b is pruned. As a result, the skyline communities
H1 and H2 will not be recomputed in the second iteration.
Algorithm 9 shows the details of our algorithm.

In lines 6–12 of Algorithm 9, since c′
2 does not decrease,

none of the computed skyline communities are recomputed
in the subsequent iterations. On the other hand, a skyline
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(a) (b)

Fig. 4 Illustration of the idea of the improved algorithm

community also cannot be recomputed in spaces with differ-
ent priorities (i.e., different c3 values), and thus, each skyline
community is only calculated once by Algorithm 9. We can
apply a similar argument used in Theorem 5 to prove the
correctness of Algorithm 9. Below, we analyze the time and
space complexity of the algorithm.

Theorem 7 The time and space complexity of Algorithm 9 is
O(s(m + n)) and O(m + n + s), respectively, where s is the
total number of 3D skyline communities.

Proof First, we analyze the time complexity of the algorithm.
Since no skyline community is recomputed by Algorithm 9,
the total time cost of computing all the skyline communities
in line 10 is O(s(m + n)). Similar to Algorithm 7, the total
number of corner points generated by the algorithm is O(s),
and thus, the total time cost taken in lines 16–19 is bounded
by O(s(m + n)). Finally, we analyze the total time cost of
computing the corner points in line 15. A straightforward
implementation of Algorithm 8 results in O(s) time com-
plexity. As a result, the total cost of maintaining the corner
points set is O(s2) in the worst case. Recall that Algorithm 9
needs to dynamically maintain the corner points set C in each
iteration. Since all the corner points in C form a skyline, it is
easy to develop a tree-like structure to maintain all the corner
points such that finding a completely dominated corner point
can be done in O(log s) and updating the tree structure can
also be done inO(log s). Since there areO(s) corner points in
total, the total maintenance cost is O(s log s) time. Addition-
ally, in the 3D case, the corner points are 2D points, and thus,
the total cost of computing the MIN skyline in each dimen-
sion (line 7 in Algorithm 8) is O(s) time. In the 3D case, s is
bounded by n2, and thus, the time cost ofmaintaining the cor-
ner points setC is also dominated byO(s(m+n)). Ultimately,
the time complexity of Algorithm 9 is O(s(m+n)). Second,
we can easily show that the space complexity of Algorithm 9
is O(m + n + s), which is the same as Algorithm 7. ��

Note that the worst-case time complexity of Algorithm 9
can be dominated by O(n2(m+n)), because the total number
of 3D skyline communities is bounded by n2. Therefore, even
in theworst case, Algorithm 9 is also better thanAlgorithm 4.
In our experiments, we will show that the ImprovedNew3D

Algorithm 10 NewHighD(G, I,F , d)

Input: A multi-valued graph G, constraints I,
fixed nodes set F , d ≥ 3.

Output: Skyline Communities in G.

1: if d = 3 then return ImprovedNew3D(G,I,F);
2: Result R ← ∅; Priority Queue Q ← ∅; C ← {(0, . . . , 0)d−1};
3: if DimMax(G,I,F , d) > 0 then
4: Q.Push((0, . . . , 0)d−1,DimMax(G,I,F , d));
5: while Q �= ∅ do
6: cd ← Q.MaxVal(); S ′ ← ∅;
7: while Q.MaxVal() = cd do
8: ((c1, . . . , cd−1), cd ) ← Q.Pop();
9: Ĩ ← I∩̄{x1 > c1, . . . , xd−1 > cd−1};
10: Let u be the node that xud = cd ; F̃ ← F ∪ {u};
11: Stmp ← NewHighD(G, Ĩ, F̃ , d − 1);
12: S ′ ← S ′ ∪ Stmp ;
13: for all (c1, . . . , cd−1) ∈ S ′ do
14: R ← R ∪ {(c1, . . . , cd−1, cd )};
15: for all s′ ∈ S ′ do C ← UpdateCornerPoints(C, s′, d − 1);
16: for all (c1, . . . , cd−1) ∈ C do
17: Ĩ ← I∩̄{x1 > c1, . . . , xd−1 > cd−1};
18: if (c1, . . . , cd−1) /∈ Q and DimMax(G, Ĩ,F , d) > 0 then
19: Q.Push((c1, . . . , cd−1),DimMax(G, Ĩ,F , d));
20: return R;

algorithm is at least one order of magnitude faster than
the Basic3D algorithm, and uses much less memory. Fur-
thermore, since the ImprovedNew3D algorithm outputs the
skyline communities progressively, it is very useful when
the application only needs part of the skyline communities.
However, theBasic3D algorithmmaygenerate invalid results;
thus, it is not a progressive algorithm.

6.2 Handling the d > 3 case

We extend Algorithm 7 to handle the d > 3 case in Algo-
rithm 10. The general procedure of Algorithm 10 is very
similar to that of Algorithm 7. The main difference is that the
algorithm recursively invokes itself with a parameter d − 1
to compute all the (d − 1)-dimensional skyline communities
(line 11). In addition, the pruning idea used in Algorithm 9
cannot be applied to the d > 3 case. The reason is as follows.
For the d > 3 case, the regular space is a (d−1)-dimensional
space. For each regular (d − 1)-dimensional space (d > 3),
we cannot use a similar method to that illustrated in Fig. 4
to prune the dominated (d − 1)-dimensional space. This
is because if we prune the dominated (d − 1)-dimensional
space, the resulting space is no longer a regular (d − 1)-
dimensional space when d > 3. The correctness analysis of
Algorithm 10 is also very similar to the analysis of Algo-
rithm 7; thus, we omit the details for brevity. Below, we
analyze the time and space complexity of the algorithm.

Theorem 8 The worst-case time and space complexity of
Algorithm 10 is O((d−1)!sd−2(m+n)) and O(m+n+ds),
respectively, where s denotes the number of d-dimensional
skyline communities.
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Proof The most time-consuming step in Algorithm 10 is
in lines 7–12, because the algorithm needs to recursively
invoke itself with a parameter d − 1. Below, we analyze
the time complexity in this recursion procedure. Note that
each d-dimensional skyline community generates at most
(d − 1) corner points by our algorithm. Hence, the total
number of (d − 1)-dimensional corner points is bounded
by (d − 1)s. By recursive analysis, we derive that the
algorithm invokes the ImprovedNew3D algorithm at most
(d − 1)s × (d − 2)s · · · × 3s times. Thus, the total time cost
is O((d − 1)!sd−2(m + n)). Note that by a similar recur-
sive analysis, we can see that the total time cost to update
the corner points in line 15 and the total time cost to push
the corner points into Q in lines 16–19 can be dominated
by O((d − 1)!sd−2) and O((d − 1)!sd−2(m + n)), respec-
tively. Thus, the worst-case time complexity of Algorithm 10
is O((d − 1)!sd−2(m + n)). For the space complexity, the
algorithm needs to maintain the graph and the total number
of corner points which use O(m + n + ds) space. ��

Note that the time complexity analysis in Theorem 8 is
the worst-case complexity. In practice, the time cost of our
algorithm is much lower than the worst-case complexity,
because our algorithm substantially prunes the dominated
space. Moreover, s and d are typically not very large in prac-
tice (e.g., s ≤ 105 and d ≤ 5), and thus, our algorithm can
be very efficient. In the experiments, we will show that our
algorithm is at least one order of magnitude faster than the
basic algorithm, and it can also be scaled to handle large
graphs. Compared to Algorithm 5, Algorithm 10 is a pro-
gressive algorithm which is very useful for applications that
require only part of the skyline communities.

Remark. It is worth remarking that all algorithms presented
in this paper focusmainly on computing the d-dimensional f
vectors for all skyline communities. Note that we can easily
determine the skyline communities using such f vectors.
Specifically, for each skyline community H , if we know
( f1(H), . . . , fd(H)), we are able to extract H from G by
the following procedure. First, for any node u ∈ G that sat-
isfies xui < fi (H) for a certain i = 1, . . . , d, we delete u
fromG. This is because such a node u cannot be contained in
H by definition. Then, we compute the connected k-core on
the remaining graph which is exactly the skyline community
H . Note that the total time cost of this procedure to derive
all skyline communities is O(s(m + n)) (s is the number
of skyline communities), which does not increase the time
complexity of all the proposed algorithms.

7 Graph reduction techniques

In this section, we develop several graph reduction tech-
niques to further speed up the proposed algorithms. The

idea is that we first apply the proposed graph reduction tech-
niques to prune the unpromising nodes which are definitely
not contained in any skyline community. Then, we invoke
the proposed skyline community search algorithms on the
pruned graph to identify all skyline communities.

Our graph reduction techniques are based on the follow-
ing idea. First, we identify a connected k-core (k-ĉore) H
from themulti-valued graphG using some fast heuristic algo-
rithms. Then,weprune all the nodes that aredominated by H ,
since these nodes cannot be contained in any skyline commu-
nity in terms of Definition 2. Note that a node u is dominated
by H if and only if xui ≤ fi (H) for all i = 1, . . . , d and there
exists xui < fi (H) for a certain i . The remaining question
is how can we quickly find a k-ĉore that can dominate as
many nodes as possible. Below, we propose three efficient
heuristic algorithms to achieve this goal.

Pruning rule 1.Thefirst pruning algorithm is shown inAlgo-
rithm 11. For each node u, the algorithm first computes the
minimum value xu among the d-dimensional values of u
(lines 1–2). Then, the algorithm calculates the 1D skyline
community H on the graphG based on this one-dimensional
value (line 3). Recall that when d = 1, there is only one 1D
skyline community in a graph which is the influential com-
munity with the highest influence value [20]. Thus, the 1D
skyline community can be computed in linear time (w.r.t. the
graph size) using the algorithm proposed in [20]. Since H
is a k-ĉore, the algorithm prunes all nodes dominated by H
(line 4).

The rationale of Algorithm 11 is described as follows. By
taking the minimum value xu as the one-dimensional value,
the values of the k-ĉore H , i.e., f1(H), . . . , fd(H), are no
less than the minimum value among all xu . As a result, many
nodes having small values on d dimensions could be pruned
by H . Moreover, the striking feature of Algorithm 11 is that
the k-ĉore H is also a valid skyline community in the d-
dimensional attribute space. Therefore, all the nodes that are
dominated by such a skyline community H can be pruned by
Algorithm 11.

Theorem 9 The 1D skyline community H obtained by Algo-
rithm 11 is a valid skyline community in the d-dimensional
attribute space.

Proof To prove the theorem, we need to show H satisfying
the cohesive, skyline, and maximal properties as defined in
Definition 2. First, H is clearly a connected k-core; thus,
the cohesive property is satisfied. Second, we prove that H
satisfies the skyline property. Suppose to the contrary that
there is a k-ĉore H ′ that dominates H . Then, by definition,
we have fi (H) ≤ fi (H ′) for all i = 1, . . . , d, and there
exists fi (H) < fi (H ′) for a certain i . Let f (H) � min

u∈H{xu}.
Since H is the 1D skyline community based on the mini-
mum value xu for each u ∈ V , we have f (H) > f (H ′).
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Algorithm 11 Rule1(G = (V , E), k)
1: for each u ∈ V do
2: xu ← min{xu1 , xu2 , · · · , xud };
3: H ← compute the 1D skyline community based on the value xu for each u ∈ V ;
4: Vp ← the set of nodes dominated by H ;
5: return the subgraph induced by V \ Vp ;

Since fi (H) ≤ fi (H ′) for each i ∈ {1, . . . , d} (by assump-
tion), we have min

i=1,...,d
{min
u∈H{xui }} ≤ min

i=1,...,d
{min
u∈H ′{xui }}. As

a result, we have min
u∈H{ min

i=1,...,d
{xui }} ≤ min

u∈H ′{ min
i=1,...,d

{xui }},
and therefore f (H) ≤ f (H ′) by definition, which is a
contradiction. Third, we show that H also meets the max-
imal property. Since H is a 1D skyline community, we have
f (H) > f (H ′) by definition. Assume that there is a k-ĉore
H ′ with fi (H) = fi (H ′) for each i = 1, . . . d that contains
H . Then, we have min

u∈H{ min
i=1,...,d

{xui }} = min
u∈H ′{ min

i=1,...,d
{xui }}.

Therefore, we can obtain that f (H) = f (H ′), which is a
contradiction. ��

We analyze the time and space complexity of Algo-
rithm 11 as follows. First, the algorithm takes O(nd) time
to compute xu for all u ∈ V . Second, the algorithm takes
O(m + n) time to compute the 1D skyline community H
by using the algorithm proposed in [20]. Therefore, the total
time cost of Algorithm 11 is O(m+nd), which is linear with
respect to (w.r.t.) the graph size. In addition, it is easy to show
that the space overhead of Algorithm 11 is also linear w.r.t.
the graph size.

Pruning rule 2. Our second pruning algorithm is described
in Algorithm 12. Algorithm 12 iteratively identifies a k-ĉore
to prune unpromising nodes. In each iteration, the algorithm
first finds the set of nodes Vi that have the minimum value
on the xi dimension for each i = 1, . . . , d (lines 3–4). Then,
the algorithm deletes all the nodes in Vi , and computes the
maximal k-core H on the remaining graph (lines 5–7). After
that, the algorithm prunes all the nodes that are dominated by
H (lines 8–10). If there is no node that can be dominated by
H (or the number of iterations is larger than a given thresh-
old τ ), the algorithm terminates (lines 8–9). The rationale
of Algorithm 11 is described below. By iteratively removing
the nodes that have the minimum value on a certain dimen-
sion, the algorithm can guarantee that the fi (H) value of the
resulting k-core H is no less than the minimum value on the
dimension xi for each i = 1, . . . d. As a consequence, many
nodes with small values on each dimension are expected to
be dominated by H , which will be pruned by Algorithm 12.

It can be shown that the time complexity of Algorithm 12
is O(τ (m + nd)) in the worst case. This is because in each
iteration, the algorithm takes O(nd) time to determine Vi for
each i = 1, . . . , d (lines 3–4) and O(m+n) time to calculate
the maximal k-core (line 7). Thus, the total time complexity
of Algorithm 12 is O(τ (m + nd)) in the worst case. Also, it

Algorithm 12 Rule2(G = (V , E), k)
1: i ter ← 0;
2: while i ter < τ do
3: for i = 1 to d do
4: Vi ← argminu∈V {xui };
5: Vmin ← ⋃

i∈{1,··· ,d} Vi ;
6: Let G′ be the subgraph induced by V \ Vmin;
7: H ← compute the maximal k-core in G′;
8: Vp ← the set of nodes in V that are dominated by H ;
9: if Vp = ∅ then break;
10: V ← V \ Vp ; i ter ← i ter + 1;
11: return the subgraph induced by V ;

Algorithm 13 Rule3(G = (V , E), k)
1: i ter ← 0;
2: while i ter < τ do
3: Vs ← Skyline(V , d,MIN);
4: Let G′ be the subgraph induced by V \ Vs ;
5: H ← compute the maximal k-core in G′;
6: Vp ← the set of nodes in V that are dominated by H ;
7: if Vp = ∅ then break;
8: V ← V \ Vp ; i ter ← i ter + 1;
9: return the subgraph induced by V ;

is easy to derive that the space overhead of Algorithm 12 is
liner w.r.t. the graph size.

Pruning rule 3. Our third pruning technique is shown in
Algorithm 13. Unlike the previous pruning rules, Algo-
rithm 13 first deletes all the nodes that are located in the
MIN skyline (see Definition 4) in the d-dimensional attribute
space (lines 3–4), and then computes the maximal k-core H
on the remaining graph (line 5). The algorithm iteratively per-
forms this procedure to prune themulti-valued graph. In each
iteration, the nodes dominated by H can be safely pruned, as
those nodes cannot be contained in any skyline community
(lines 6–8). If no node can be dominated by H , the algorithm
terminates (line 7). The rationale of Algorithm 13 is that the
nodes located in the MIN skyline are likely dominated by a
skyline community; thus, they are more likely pruned by H .

The time complexity of Algorithm 13 is analyzed as
follows. First, the algorithm takes O(n logd−2 n) time to
compute the MIN skyline using the algorithm proposed in
[18]. Second, the algorithm consumes O(m + n) time to
calculate the maximal k-core. Since there are at most τ iter-
ations, the total time costs of Algorithm 13 is O(τ (m +
n logd−2 n)) in the worst case. Similar to the previous prun-
ing algorithms, we can easily derive that the space cost of
Algorithm 13 is also linear w.r.t. to the graph size.

8 Experiments

We conduct comprehensive experiments to evaluate the pro-
posed model and algorithms. For the d = 2 case, we
implement two algorithms: SkylineComm2D (Algorithm 2)
and NewPrune. NewPrune is the SkylineComm2D algo-
rithm equipped with all pruning techniques developed in
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Table 1 Datasets (K = 103 and M = 106)

Network n m dmax kmax

Slashdot 79K 0.5M 2507 53

Delicious 536K 1.4M 3216 33

Lastfm 1.2M 4.5M 5150 70

Flixster 2.5M 7.9M 1474 68

Sect. 7. For the d ≥ 3 case, we implement three algorithms:
Basic (Algorithm 5), New (Algorithm 10), and NewPrune.
Here NewPrune is the New algorithm with all pruning tech-
niques developed in Sect. 7. Note that for the pruning rules
2 and 3 developed in Sect. 7, we set the parameter τ to be
a sufficient large number so that the algorithm terminates
with no node can be pruned. We will study the effect of the
parameter τ in Sect. 8.3. In the Basic algorithm, we have
integrated the pruning rule proposed in Sect. 5.3. For conve-
nience, when d = 2, both Basic and New are the same as the
SkylineComm2D algorithm. Since all the existing commu-
nity search algorithms cannot be used for skyline community
search, we use the Basic algorithm as the baseline algorithm
for performance studies. All the algorithms are implemented
in C++, and all experiments are conducted on a PC with two
2.4GHz Intel Xeon CPUs and 64GB main memory running
Ubuntu 14.04.5 (64-bit).

Datasets. We use four real-world networks in our exper-
iments. The statistics of the datasets are summarized in
Table 1. In Table 1, dmax and kmax denote the maximal
degree and the maximal core number of the network, respec-
tively. All four datasets are social networks, downloaded
from (http://networkrepository.com/). Note that the origi-
nal datasets do not contain numerical attributes. To evaluate
the performance of our algorithms, we apply a widely used
method in the skyline processing literature [5] to generate
the numerical attributes for our datasets. We use the same
method proposed in [5] to generate three different types of
numerical attributes in each network: (1) independence, (2)
correlation, and (3) anti-correlation. Independence implies
that the attribute values are generated independently using
a uniform distribution. Correlation means that if a node is
good in one dimension (attribute), then it is also good in the
other dimensions. Anti-correlation indicates that if a node
is good in one dimension, then it is bad in one or all of the
other dimensions. Intuitively, the number of skyline com-
munities in the network with correlated attributes should be
much smaller than the number in the same networkwith inde-
pendent attributes or anti-correlated attributes, and among
them, the number of skyline communities in the networks
with anti-correlated attributes is maximal.

8.1 Performance studies for d = 2

Exp-1: Efficiency of the 2D algorithms. We vary the core
number k from 5 to 25 and evaluate the efficiency of the
SkylineComm2D and NewPrune algorithms. The results
on the networks with independent attributes are shown in
Fig. 5. As can be seen, the running time of SkylineComm2D
decreases with increasing k. This is because the graph size
after pruning decrease with increasing k. For example, in
Fig. 5d, when k = 15, SkylineComm2D takes 2.8 s to output
all the skyline communities, whereas it only uses 2.15 s if
k = 25. Also, we can see that the running time of NewPrune
is not very sensitive w.r.t. k. Moreover, NewPrune is much
faster than SkylineComm2D on all the datasets due to the
powerful pruning rules developed in Sect. 7. For instance,
in Fig. 5d, NewPrune takes 0.2 seconds to compute all sky-
line communities given that k = 15, while SkylineComm2D
takes 2.8 s using the same parameter setting. Note that on all
datasets, SkylineComm2D and NewPrune take less than 4
and 0.5 s to output all the results, respectively. These results
indicate that both SkylineComm2D and NewPrune are very
efficient in practice, which confirm our complexity analysis
shown in Sects. 4 and 7.

Figures 6 and 7 show the efficiency of our 2D algorithms
on the networkswith correlated and anti-correlated attributes,
respectively. As can be seen, on these two types of attributed
networks, the running time of SkylineComm2D decreases
with increasing k, because the graph size (i.e., the maximal
k-core) decreases as k increases. Similarly, the running time
of NewPrune is much less than that of SkylineComm2D on
all datasets. Compared to the results shown in Fig. 5, the
running time of SkylineComm2D and NewPrune on the net-
workswith correlated attributes ismuch less than the running
time of SkylineComm2D and NewPrune on the networks
with independent and anti-correlated attributes, respectively.
For example, when k = 5, SkylineComm2D takes 0.96 s
to find all skyline communities on the Flixster network
with correlated attributes (Fig. 6d), while it consumes 3.45
and 50 s on the same network with independent and anti-
correlated attributes, respectively (Figs. 5d and 7d). This is
because the number of skyline communities in the correlated
attributednetwork ismuch smaller than the number of skyline
communities in the independent or anti-correlated attributed
network. These results are consistent with the complexity
analysis shown in Sects. 4 and 7.

Exp-2: Memory overhead of the 2D algorithms.We show
the memory costs of SkylineComm2D and NewPrune with
varying k on the independent attributed networks. Similar
results can be observed on the other types of attributed net-
works. Figure 8 shows our results. From Fig. 8, we can see
that the memory overheads of both SkylineComm2D and
NewPrune decrease with increasing k on all datasets. This
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(a) (b) (c) (d)

Fig. 5 Efficiency of SkylineComm2D and NewPrune in networks with independent attributes (vary k)

(a) (b) (c) (d)

Fig. 6 Efficiency of SkylineComm2D and NewPrune in networks with correlated attributes (vary k)

(a) (b) (c) (d)

Fig. 7 Efficiency of SkylineComm2D and NewPrune in networks with anti-correlated attributes (vary k)

is because the graph size decreases as k increases. Also,
we can see that the memory costs of SkylineComm2D and
NewPrune are at most 3 times the graph size, indicating that
both SkylineComm2D and NewPrune are memory-efficient.
These results are consistent with the space complexity of the
2D algorithms.

Exp-3: Scalability of the 2D algorithms.We vary the num-
ber of nodes (n) and edges (m) on the Lastfm network
with independent attributes to evaluate the scalability of the
SkylineComm2D and NewPrune algorithm. Similar scala-
bility results can also be obtained on the other datasets with
various types of attributes. The results are shown in Fig. 9.
As can be seen, both SkylineComm2D and NewPrune scale
near linearly with varying n orm. This is because the number
of 2D skyline communities is typically much smaller than n,
and thus, the complexity of SkylineComm2D andNewPrune
is near linear w.r.t. the graph size. These results confirm the
complexity analysis in Sects. 4 and 7.

8.2 Performance studies for d ≥ 3

Exp-4: Efficiency (d = 3). Fig. 10 shows the efficiency
results of Basic, New, and NewPrune on the networks with
independent attributeswhend = 3.As can be seen, if k ≥ 15,
the running time of Basic, New, and NewPrune decreases as
k increases. However, if k < 15, the running time slightly
increaseswhen k increases.On all the datasets,New is at least
one order of magnitude faster than Basic, and NewPrune is
around 3 times faster than New. For instance, in Fig. 10a,
when k = 20, NewPrune takes 1.7 s, New takes 5.3 s,
whereas Basic takes 100.6 s. Also, as shown in Fig. 10c,
d, Basic is very time consuming on the Lastfm and Flixster
datasets (“Inf” means that the algorithm cannot terminate
in 50,000 s). Both New and NewPrune, however, still run
very fast on these datasets. For example, in Fig. 10d, New
and NewPrune only take 200 and 80 s to find all 3D skyline
communities on Flixster, respectively. These results confirm
our theoretical analysis in Sects. 5, 6, and 7.

For d = 3, Figs. 11 and 12 report the efficiency of
different algorithms on the networkswith correlated and anti-
correlated attributes, respectively. As can be observed, on
both of these two types of datasets,New is at least one order of
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(a) (b) (c) (d)

Fig. 8 Memory overheads of SkylineComm2D and NewPrune in networks with independent attributes (vary k)

(a) (b)

Fig. 9 Scalability of SkylineComm2D and NewPrune (k = 15)

magnitude faster than Basic in most testings, and NewPrune
is at least twice faster than New. Basic is very costly on the
Lastfm and Flixster networks with anti-correlated attributes
(Fig. 12c, d), but New and NewPrune still perform very well
on these datasets. However, on all the networks with corre-
lated attributes, all three algorithms work very well. This is
because the number of skyline communities in the networks
with correlated attributes is not very large. Furthermore, we
can see that NewPrune runs extremely fast on the networks
with correlated attributes which is three orders of magni-
tude faster than New. The reason is that our pruning rules
developed in Sect. 7 can substantially prune the original
multi-valued network if its attributes are dependent. These
results further confirm the time complexity analysis of our
algorithms in Sects. 5, 6, and 7.

Exp-5: Memory overhead. Figure 13 depicts the memory
costs of Basic, New, and NewPrune on the networks with
independent attributes given that d = 3. Similar results can
also be observed in different types of attributed networks
and also for the other d values. As can be seen, the space
usage of NewPrune is comparable to that of New. Both
New and NewPrune consume much less memory than Basic
on all datasets. This is because Basic needs to maintain a
large number of invalid skyline communities. Generally, the
memory size of Basic, New and NewPrune decreases with
increasing k. When k = 25, the space costs of New and
NewPrune are close to that of the graph size, as these algo-
rithms significantly reduce the graph size when k is large.
These results demonstrate that both New and NewPrune are
memory-efficient, which are consistent with the space com-
plexity analysis shown in Sects. 6 and 7.

Exp-6: Efficiency (Vary d). We evaluate the efficiency of
Basic, New, and NewPrune by varying d from 2 to 5. Note
that when d = 2, both Basic and New are referred to as the
SkylineComm2D algorithm. The results on theDelicious and
Flixster networks are reported in Fig. 14. Similar results can
be observed on the other datasets. As desired, the running
time of all algorithms increases as d increases. NewPrune
is consistently faster than New on all datasets, and both
New and NewPrune are at least one order of magnitude
faster than Basic when d ≥ 3. As shown in Fig. 14c, d,
NewPrune is at least two orders of magnitude faster than
New on the networks with correlated attributes, which are
consistent with our previous results. Also, we can see that
all algorithms work very well for all d on the networks with
correlated attributes, because the number of skyline commu-
nities in these networks does not increase very quickly when
d increases. The Basic algorithm is typically very expensive,
and it is even impractical when d ≥ 3 on the Flixster net-
work with independent or anti-correlated attributes. For both
New and NewPrune, their running time typically increase
by 10 times when d increases by 1 on the network with inde-
pendent or anti-correlated attributes. The reason is that the
number of skyline communities increases quickly when d
increases by 1 on these networks. In practice, d is often very
small (e.g., d ≤ 5). This is because the nodes in most real-
world networks do not have too many numeric attributes.
For example, in the Aminer scientific network (http://aminer.
org/), each node has 7 numeric attributes. To the best of our
knowledge, Aminer is the publicly available network that has
the largest number of numeric attributes. On the other hand,
in the skyline community model, d is equal to the number
of selected numeric attributes which is often much smaller
than the total number of numeric attributes. Therefore, in this
sense, our New and NewPrune algorithms are tractable for
handling most real-world applications.

Exp-7: Scalability. We evaluate the scalability of New and
NewPrune when d ≥ 5. To this end, we vary n and m on the
Lastfm network with independent attributes. The results for
other types of datasets are consistent. The results for d = 6
are reported in Fig. 15. Similar curves can also be observed
for other d values. As can be seen, the running time of New
and NewPrune increases smoothly with varying m and n,
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(a) (b) (c) (d)

Fig. 10 Efficiency of Basic, New, and NewPrune in networks with independent attributes (vary k, d = 3)

(a) (b) (c) (d)

Fig. 11 Efficiency of Basic, New, and NewPrune in networks with correlated attributes (vary k, d = 3)

(a) (b) (c) (d)

Fig. 12 Efficiency of Basic, New, and NewPrune in networks with anti-correlated attributes (vary k, d = 3)

implying that our algorithms scale well w.r.t. the graph size.
These results indicate that bothNew andNewPrune are scal-
able to handle large real-world graphs given that d = 6.
Again, as d is often very small (e.g., d ≤ 5), our algorithms
are scalable to handle most real-world applications.

Exp-8:Number of skyline communities.Weshow the num-
ber of skyline communities identified by our algorithms with
varying d. The results on Delicious and Flixster networks
with independent attributes are depicted in Fig. 16. Simi-
lar results can also be observed on the other datasets. From
Fig. 16, we can see that the number of skyline communities,
denoted by s, increases by 10 times when d increases by 1.
These results are consistent with the efficiency results of our
algorithms.

Figure 17 shows the number of skyline communities
(denoted by s) with varying k on the Delicious and Flixster
datasets with independent attributes. As can be seen, if
k < 15, s slightly increases with increasing k. However,
if k > 15, s decreases as k increases. This is because, if k is
large, the number of k-ĉores may decrease with increasing
k.

Figure 18 depicts the number of skyline communities on
the Delicious and Flixster datasets with different types of
attributes. As desired, the number of skyline communities
on the network with anti-correlated attributes is the largest
among all the three types of attributed networks. Also, we
can see that the number of skyline communities on the inde-
pendent and anti-correlated attributed networks is at least one
order of magnitude larger than the number of skyline com-
munities in the correlated attributed network. These results
further confirm the efficiency results of our algorithms.

Exp-9: Progressive performance. Recall that our best
algorithm NewPrune can progressively output skyline com-
munities. In this experiment, we evaluate the progressive
performance of NewPrune. Figure 19 shows the results on
the Flixster network with independent attributes when d = 2
and d = 5. The results for the other d values are consistent.
From Fig. 19, we can see that the running time of NewPrune
is proportional to the number of skyline communities. When
d = 2, NewPrune can progressively output all the results in
less than 0.5 s. When d = 5, the NewPrune algorithm finds
100 skyline communities in less than 25 s, and outputs 1000
skyline communities in less than 200 s in a 2.5 million nodes
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(a) (b) (c) (d)

Fig. 13 Memory overheads of Basic, New, and NewPrune in networks with independent attributes (vary k, d = 3)

(a) (b)

(c) (d)

(e) (f)

Fig. 14 Efficiency of Basic, New, and NewPrune (k = 15)

(a) (b)

Fig. 15 Scalability of New and NewPrune (k = 15, d = 6)

graph. These results demonstrate that our algorithm is very
efficient for applications that only need to find part of the
skyline communities.

Exp-10: Results on power-law random graphs. Here we
evaluate the performance of our algorithms on large-scale
power-law random graphs. To this end, we generate a power-
law graph with n = 5M and m = 7.3M and a set of
power-lawgraphswithmore than10millionnodes and edges.
All these power-law graphs are generated by a random graph
generator developed in SNAP (http://snap.stanford.edu)with
a power-law degree exponent γ = 2.5. For each node in

(a) (b)

Fig. 16 Number of skyline communities (vary d, k = 15)

(a) (b)

Fig. 17 Number of skyline communities (vary k, d = 3)

the power-law graph, we randomly generate d independent
numerical attributes using a uniform distribution. The results
are reported in Fig. 20. From Fig. 20a, all three algorithms
are scalable to a million-scale graph for a large d value (e.g.,
d = 10). The running time of Basic, New, and NewPrune
increases as d increases. Figure 20b shows that the running
time of all algorithms decreases with increasing k. Gener-
ally,New is around one order of magnitude faster than Basic,
and NewPrune is at least twice faster than New under most
parameter settings. Figure 20c, d shows the running time
of New and NewPrune with varying m. As can be seen,
both New and NewPrune exhibit very good scalability per-
formance with respect to m. Even when d = 6, New and
NewPrune take round 20,000 and 10,000 s in a graph with
100million edges, respectively. These results further demon-
strate the high efficiency and scalability of the proposed
algorithms.

8.3 Results on a graph with real numeric attributes

In this subsection, we evaluate our algorithms using an addi-
tional dataset Aminer which has real number attributes. The
Aminer dataset is a scientific collaboration network which is
downloaded from http://aminer.org. Specifically, the Aminer
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(a) (b) (c) (d)

Fig. 19 Progressive performance testing on the Flixster dataset (k = 15)

(a) (b)

Fig. 18 Number of skyline communities (various attributes)

(a) (b)

(c) (d)

Fig. 20 Results on the power-law random graphs

dataset contains 1,712,433 authors and 4,258,615 collabora-
tion relationships, where each node in Aminer has 7 numeric
attributes (#papers, #citations, h-index, g-index, sociability,
diversity, and activity).

Exp-11: Efficiency results on Aminer. Figure 21 shows the
runtime of Basic,New, andNewPrune on Aminer with vary-
ing d and k. As expected, NewPrune is consistently faster
than Basic andNewwith varying k or d values, which further
confirms the high effectiveness of our pruning techniques.
Moreover, we can see that when d ≤ 5, NewPrune is around
3 orders of magnitude faster than New. The reason could
be that the first 5 attributes of Aminer ((#papers, #citations,
h-index, g-index, sociability) are highly correlated, and thus,
our pruning rules can prune a large number of unpromising
nodes. Such results are consistent with the results shown in
Fig. 14c, d.

(a) (b)

Fig. 21 Efficiency results on the Aminer dataset

Exp-12: Comparison of different pruning rules. Here, we
compare the performance of different pruning rules.We refer
to NewRule1, NewRule2, NewRule3 as the New algorithm
integrated with the pruning rules 1, 2, and 3, respectively.
Figure 22a, b shows the runtime of NewRule1, NewRule2,
NewRule3 with varying d and k. As can be seen, the run-
time of NewRule1, NewRule2, NewRule3 are comparable,
indicating that all three pruning rules exhibit similar pruning
effect for the New algorithm. Figure 22c shows the runtime
of different pruning rules. As expected, Rule1 takes much
less time than Rule2 and Rule3, but its pruning power should
be lower than that of Rule2 and Rule3 as indicated in Fig. 22a,
b. Figure 22c also shows how the order of applying differ-
ent rules affects the pruning performance. As can be seen,
when we first apply Rule1 followed by Rule2 or Rule3 (i.e.,
Rules123 and Rules132 in Fig. 22c), we can achieve the best
pruning performance. The reason is that Rule1 is much faster
than Rule2 and Rule3, thus using such a lightweight rule first
to prune the graph and then invoking Rule2 and Rule3 on the
pruned graph can significantly reduce the time overhead. It
is worth noting that in our experiments, the NewPrune algo-
rithm first applies Rule1 followed by Rule2 and then Rule3
for pruning.

Exp-13: Effect of the parameter τ . Here, we study the
effect of the parameter τ in NewRule2 and NewRule3. From
Fig. 23, we can observe that the runtime of NewRule2 or
NewRule3 decreases as τ increases, suggesting that a larger τ
is more preferable for bothNewRule2 andNewRule3. Recall
that a large τ may increase the pruning costs of both Rule2
and Rule3, but the benefits are that many unpromising nodes
can be pruned by Rule2 and Rule3with a large τ . The results
in Fig. 23 indicate that such benefits are greater than the prun-
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(a) (b)

(c)

Fig. 22 Comparison of different pruning rules on Aminer

(a) (b)

Fig. 23 Effect of the parameter τ on Aminer

ing costs for the NewRule2 and NewRule3 algorithms. This
is why we set τ to be a sufficient large number for both Rule2
and Rule3 in all our experiments.

8.4 Case studies

We use two real-world datasets for case studies: AminerS-
mall and Gowalla. The AminerSmall dataset is a subgraph
of the Aminer dataset used in Sect. 8.3 which contains the
authors in database, data mining, machine learning, and
information retrieval areas. AminerSmall comprises 5,411
nodes and 17,477 edges. We select four numeric attributes
for each author: h-index, the number of papers, activity, and
diversity. Here, h-index measures the academic influence of
an author, activity measures whether an author is active or
not in recent years, and diversitymeasures the diversity of the
author’s research topics. The Gowalla dataset is a location-
based social network (LBSN).Wedownload this dataset from
(http://snap.stanford.edu). For each node in the Gowalla, we
extract a location from its check-in records. We compare our
approach (i.e., the skyline community model), denoted by
SkyCore, with three baseline methods: InfluCore, AvgCore,
and MergeCore. InfluCore denotes the influential commu-
nity search algorithm [20] which only considers one numeric
attribute. AvgCore first takes the average value over the d

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 24 Comparison of different methods on the AminerSmall dataset
(k = 5); Fig. (a–e) shows the results of the query “Prof. Dan Suciu,”
and Fig. (a, f–i) depicts the results of the query “Prof. Elisa Bertino”

numeric attributes for each node and then invokes InfluCore
to compute the communities based on the average values.
MergeCore first finds the top-1 influential communities on
each numeric attribute and then merges the d resulting com-
munities. Below, we conduct three different case studies to
evaluate the proposed method.

Exp-14: Finding similar and influential communities. In
this case study, we aim to find the influential communities
such that their members are similar to a given query node
u based on the Jaccard similarity. For each node in Aminer,
we use the h-index to measure the influence. We compute
the Jaccard similarity between u and the other nodes in the
network (for a node v, the Jaccard similarity between u and
v is |N (u) ∩ N (v)|/|N (u) ∪ N (v)|). As a result, we can
obtain two numeric attributes for each node (the h-index and
the Jaccard similarity). For a fair comparison, we normal-
ize each numeric attribute into the range [0, 1] in all case
studies. Based on these two normalized numeric attributes,
we apply the above four different methods with parameter
k = 5 to compute the communities. Figure 24a–e reports the
results of professor Dan Suciu’s communities, and Fig. 24a,
f–i shows the results of professor Elisa Bertino’s communi-
ties. In Fig. 24a, b, f, we can see that the results obtained by
InfluCoreonly capture one attribute. For example, inFig. 24a,
the community mainly contains the influential authors in the
database communitywhich are not necessarily similar to pro-
fessor Dan Suciu (by Jaccard similarity). On the other hand,
in Fig. 24b, the community comprises the authors that are
similar to professor Dan Suciu, but their h-index values are
not necessarily very high. Also, we can observe that there
is no overlap among the communities (a), (b), and (f); thus,
MergeCore cannot obtain a connected community. In effect,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 25 Comparison of different methods on the Gowalla dataset with a
query node “v615”(k = 5); Figs. (a–e) use two attributes: closeness and
similarity ; Figs. (f–i) use two attributes: closeness and PageRank; “cl,”
“si,” and “pr,” denote the closeness, similarity, and PageRank values,
respectively

we find thatMergeCore fails to find a connected community
inmost of the case studies. This is because the resulting com-
munities on different attributes are typically uncorrelated,
and therefore, the merged community is often disconnected.
From Fig. 24c, g, the resulting communities obtained by
AvgCore also cannot capture both influence and similarity.
For example, in Fig. 24g, the community includes many high
influential researchers, but they are dissimilar to professor
Elisa Bertino. Moreover, the community also does not con-
tain professor Elisa Bertino. As shown in Fig. 24d, e, h, i,
our approach (SkyCore) performs much better than all the
baseline methods. For example, in Fig. 24d, the community
comprises many high influential researchers who are also
very similar to professor Dan Suciu based on the Jaccard
similarity. These results indicate that the proposed skyline
community approach can indeed capture both influence and
similarity of a community. Thus,webelieve that our approach
is very useful for such a personalized influential community
search application.

Exp-15: Finding close communities in Gowalla. In this
case study, we aim to identify the “close and similar” (or
“close and influential”) communities for a query node in the
LBSN.For eachnodev,we compute three numeric attributes:
the Euclidian distance and the Jaccard similarity between the
query node u and v (|N (u)∩ N (v)|/|N (u)∪ N (v)|), and the
PageRank of v. We normalize all the attributes into the range
[0, 1]. For the normalized Euclidian distance xv of v, we

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 26 Comparison of different methods for team search on the Amin-
erSmall dataset

use 1 − xv to measure the closeness between u and v. The
PageRank of v is used to measure the influence of v. The
results based on the query node v615 are reported in Fig. 25.
Similar results can be observed by the other query nodes.
In Fig. 25, each reported community is associated with two
values, denoting the computed f values of the community
(Eq. 1). Similar to the previous case study, the InfluCore only
captures one attribute. For example, in Fig. 25a, the commu-
nity contains the nodes that are close to the query node v615,
but the nodes are not similar to v615. As can be seen, the
closeness value of this community is 0.95, while the similar-
ity value is only 0.07. Also, we can see that this community
does not contain the query node. The AvgCore performs bet-
ter than InfluCore, but it is significantly worse than SkyCore.
For example, in Fig. 25c, d, SkyCore dominates InfluCore
in both closeness and similarity. Likewise, when using the
closeness and PageRank attributes, SkyCore is also the win-
ner among all the algorithms as shown in Fig. 25f–i. These
results indicate that the skyline community approach is very
effective in applications of finding “close and similar” com-
munities (or “close and influential” communities) in LBSN.

Exp-16: Versatile team search in AminerSmall.We com-
pare our algorithm with three baseline methods for versatile
team search on the AminerSmall network. We use two sets
of attributes which areA = {the number of papers, activity}
and B = { the number of papers, diversity}. For the attribute
set A, we aim to find the teams from Aminer such that its
members not only publish a large number of papers, but they
are also active in recent years. Similarly, for setB, our goal is
to identify the teams, in which the members have numerous
publications and diverse research interests. We set k = 4 in
this case study, and similar results can be observed for other k
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values. For each numeric attribute, we also normalize the val-
ues of the nodes into the range [0, 1]. Figure 26a–c reports the
results obtained by InfluCore based on the attributes the num-
ber of papers, activity, and diversity, respectively. As desired,
the team in Fig. 26a mainly comprises the researchers who
publish a large number of papers. Similarly, the teams in
Fig. 26b, c focus mainly on the activity and diversity, respec-
tively. Note that unlike our previous case studies, the teams
obtained by InfluCore on different attributes have overlap-
ping members. Thus, the MergeCore method can obtain a
connected team as shown in Fig. 26f, g. The reason could be
that the three numeric attributes used in this case studymaybe
correlated with each other, and therefore, some nodesmay be
contained in various top-1 influential communities with dif-
ferent attributes. Figure 26d, e shows the results by AvgCore.
As can be seen, the two resulting teams w.r.t. the attribute
sets A and B are highly similar. The team in Fig. 26d con-
tains the researchers that have many publications, and they
are also active in recent years. The similar team in Fig. 26e,
however, cannot capture the diversity, as it mainly contains
database researchers. Compared to AvgCore, our approach
(SkyCore) canwell capture the two attributes simultaneously.
For example, in Fig. 26i, the team obtained by SkyCore con-
sists of the scholars that have many publications and diverse
research topics (including machine learning and data min-
ing). Compared to MergeCore, SkyCore tends to find more
compact teams. Moreover, by our definition of skyline com-
munity, the results obtained by SkyCore can dominate the
results obtained by MergeCore. These results demonstrate
that our approach is more effective than the baseline meth-
ods for the application of versatile team search.

9 Conclusion

In this paper, we propose a novel skyline community model
to detect interesting communities in a multi-valued net-
work, where each node is associated with d numerical
attributes. The resulting communities identified by ourmodel
cannot be dominated by the other communities in the d-
dimensional attribute space. We develop a basic and a novel
space-partition algorithm to find all the skyline communities
efficiently. The worst-case time complexity of the space-
partition algorithm relies mainly on the number of skyline
communities; thus, it is very efficient if the size of the answer
is not very large. In addition, we also develop three new
graph reduction techniques to further accelerate the proposed
algorithms. Extensive experiments in both real-world and
synthetic multi-valued networks demonstrate the efficiency,
scalability, and effectiveness of our solutions.
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